Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Соловьев Дмитрий Александрович

Должность: ректор ФГБОУ ВО Вавиловский университет

Дата подписания: 17.09.2024 11:28:51 Уникальный программный ключ:

528682d78e671e566ab07f01fe1b

Приложение 1

#### МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ



Федеральное государственное бюджетное образовательное учреждение высшего образования «Саратовский государственный аграрный университет имени Н.И. Вавилова»

**УТВЕРЖДАЮ** 

<u>Бакиров С.М./</u> 2022 г.

### ОЦЕНОЧНЫЕ МАТЕРИАЛЫ

Дисциплина

Механика жидкости и газа

Направление подготовки

08.03.01Строительство

Направленность

(профиль)

Тепло-, газо-, холодоснабжение и вентиляция

Квалификация

Выпускника

Бакалавр

Нормативный срок

обучения

4 года

Форма обучения

Очно - заочная

Кафедра-разработчик

Природообустройство, строительство и

теплоэнергетика

Ведущий преподаватель

Миркина Е. Н., доцент

Разработчик: доцент Миркина Е.Н. <u>Ми</u>

**Саратов 2022** 

#### Содержание

| 1 | Перечень компетенций с указанием этапов их формирования в процессе   |    |
|---|----------------------------------------------------------------------|----|
|   | освоения ОПОП.                                                       | 3  |
| 2 | Описание показателей и критериев оценивания компетенций на           |    |
|   | различных этапах их формирования, описание шкал оценивания           | 4  |
| 3 | Типовые контрольные задания или иные материалы, необходимые для      |    |
|   | оценки знаний, умений, навыков и (или) опыта деятельности,           |    |
|   | характеризующих этапы формирования компетенций в процессе            |    |
|   | освоения образовательной программы.                                  | 7  |
| 4 | Методические материалы, определяющие процедуры оценивания знаний,    |    |
|   | умений, навыков и (или) опыта деятельности, характеризующих этапы их |    |
|   | формирования                                                         | 11 |

### 1. Перечень компетенций с указанием этапов их формирования в процессе освоения ОПОП

В результате изучения дисциплины «Механика жидкости и газа» обучающиеся, в соответствии с ФГОС ВО по направлению подготовки 08.03.01Строительство, утвержденного приказом Министерства образования и науки РФ от 31 мая 2017 г. №481, формируют следующие компетенции, указанные в таблице 1

Таблица 1 Формирование компетенций в процессе изучения дисциплины «Механика жилкости и газа»

| ]                   | Компетенция      | Структурные         | Этапы     | Виды занятий | Оценочные       |
|---------------------|------------------|---------------------|-----------|--------------|-----------------|
| Код                 | Наименование     | элементы            | формиро   | для          | средства для    |
|                     |                  | компетенции (в      | вания     | формирования | оценки уровня   |
|                     |                  | результате освоения | компетен  | компетенции  | сформированност |
|                     |                  | дисциплины          | ции в     |              | и компетенции   |
|                     |                  | обучающий должен    | процессе  |              |                 |
|                     |                  | знать, уметь,       | освоения  |              |                 |
|                     |                  | владеть)            | ОПОП      |              |                 |
|                     |                  |                     | (семестр) |              |                 |
| 1                   | 2                | 3                   | 4         | 5            | 6               |
| ОПК-1               | способен решать  | ОПК-1.2             | 4         | лекции,      | Устный отчет по |
|                     | задачи           | Определение         |           | лабораторные | лабораторным    |
|                     | профессиональной | характеристик       |           | занятия      | работам, устный |
|                     | деятельности на  | физического         |           |              | опрос, зачет    |
|                     | основе           | процесса (явления), |           |              |                 |
|                     | использования    | характерного для    |           |              |                 |
| теоретических и     |                  | объектов            |           |              |                 |
| практических основ  |                  | профессиональной    |           |              |                 |
| естественных и      |                  | деятельности, на    |           |              |                 |
| технических наук, а |                  | основе              |           |              |                 |
| также               |                  | теоретического и    |           |              |                 |
|                     | математического  | экспериментального  |           |              |                 |
|                     | аппарата         | исследований.       |           |              |                 |
|                     |                  | ОПК-1.3             |           |              |                 |
|                     |                  | Представление       |           |              |                 |
|                     |                  | базовых для         |           |              |                 |
|                     |                  | профессиональной    |           |              |                 |
|                     |                  | сферы физических    |           |              |                 |
|                     |                  | процессов и явлений |           |              |                 |
|                     |                  | в виде              |           |              |                 |
|                     |                  | математического(их) |           |              |                 |
|                     |                  | уравнения(й)        |           |              |                 |

Примечание:

Компетенция ОПК-1 — также формируется в ходе освоения дисциплин: «Математика (Базовый уровень)», «Физика», «Инженерная физика», «Химия», «Информатика», «Цифровые технологии в системах ТГС и В», «Механика. Теоретическая механика», «Механика. Техническая механика», «Инженерная геология», «Механика. Механика грунтов», «Начертательная геометрия. Инженерная графика», «Прикладная математика в системах ТГС и В», «Тепломассообмен», «Материаловедение и технология конструкционных материалов», «Детали машин», «Сопротивление материалов», «Электроснабжение с основами

электротехники», «Изыскательская практика», и «Подготовка к процедуре защиты и защита выпускной квалификационной работы».

## 2. Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

#### Перечень оценочных средств

| No  | Наименование                                             | Краткая характеристика                                                                                                                                                                                                                                                                                                                                | Представление оценочного                                                     |
|-----|----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| п/п | оценочного средства                                      | оценочного средства                                                                                                                                                                                                                                                                                                                                   | средства в ФОС                                                               |
| 1   | оценочного средства устный отчет по лабораторным работам | оценочного средства  средство, направленное на изучение практического хода тех или иных процессов, исследование явления в рамках заданной темы с применением методов, освоенных на лекциях, сопоставление полученных результатов с теоретическими концепциями, осуществление интерпретации полученных результатов, оценивание применимости полученных | требования к устному отчету по                                               |
|     |                                                          | результатов на практике                                                                                                                                                                                                                                                                                                                               |                                                                              |
| 2   | устный опрос<br>(собеседование)                          | средство контроля, организованное как специальная беседа педагогического работника с обучающимся на темы, связанные с изучаемой дисциплиной и рассчитанной на выяснение объема знаний обучающегося по определенному разделу, теме, проблеме и т.п.                                                                                                    | требования к ответу при устном опросе, перечень вопросов к текущему контролю |

#### Программа оценивания контролируемой дисциплины

| <b>№</b><br>π/π | Контролируемые разделы (темы дисциплины)            | Код контролируемой компетенции (или ее части) | Наименование оценочного средства                         |
|-----------------|-----------------------------------------------------|-----------------------------------------------|----------------------------------------------------------|
| 1               | 2                                                   | 3                                             | 4                                                        |
| 1               | Основные понятия механике жидкости и газа.          | ОПК- 1                                        | Устный опрос, зачет                                      |
| 2               | Предмет механика жидкости и газа                    | ОПК- 1                                        | Устный опрос, устный отчет по лабораторной работе, зачет |
| 3               | Основные законы гидростатики.                       | ОПК- 1                                        | Устный опрос, устный отчет по лабораторной работе, зачет |
| 4               | Основы гидродинамики                                | ОПК- 1                                        | Устный опрос, зачет                                      |
| 5               | Измерение статического давления в жидкостях и газах | ОПК- 1                                        | Устный опрос, устный отчет по лабораторной работе, зачет |
| 6               | Построение эпюр гидростатического давления          | ОПК- 1                                        | Устный опрос, устный отчет по лабораторной работе,       |

| <b>№</b><br>π/π | Контролируемые разделы (темы дисциплины)                                        | Код контролируемой компетенции (или ее части) | Наименование оценочного средства                         |
|-----------------|---------------------------------------------------------------------------------|-----------------------------------------------|----------------------------------------------------------|
| 1               | 2                                                                               | 3                                             | 4                                                        |
|                 |                                                                                 |                                               | зачет                                                    |
| 7               | Режимы движения вязкой жидкости                                                 | ОПК- 1                                        | Устный опрос, зачет                                      |
| 8               | Режимы движения вязкой жидкости                                                 | ОПК- 1                                        | Устный опрос, устный отчет по лабораторной работе, зачет |
| 9               | Сопротивление по длине                                                          | ОПК- 1                                        | Устный опрос, устный отчет по лабораторной работе, зачет |
| 10              | Гидравлический удар                                                             | ОПК- 1                                        | Устный опрос, зачет                                      |
| 11              | Диаграмма уравнения Бернулли                                                    | ОПК- 1                                        | Устный опрос, устный отчет по лабораторной работе, зачет |
| 12              | Основные понятия газовой динамики                                               | ОПК- 1                                        | Устный опрос, зачет                                      |
| 13              | Истечение жидкости через малое отверстие с острой кромкой при постоянном напоре | ОПК- 1                                        | Устный опрос, устный отчет по лабораторной работе, зачет |
| 14              | Уравнение Бернулли – Сен-Венана и его приложения                                | ОПК- 1                                        | Устный опрос, зачет                                      |
| 15              | Измерение расхода жидкости<br>ультразвуковым расходомером                       | ОПК- 1                                        | Устный опрос, устный отчет по лабораторной работе, зачет |
| 16              | Одномерные изоэнтропические течения газа                                        | ОПК- 1                                        | Устный опрос, зачет                                      |
| 17              | Уравнение Бернулли – Сен-Венана                                                 | ОПК- 1                                        | Устный опрос, устный отчет по лабораторной работе, зачет |
| 18              | Одномерные течения газа с трением                                               | ОПК- 1                                        | Устный опрос, зачет                                      |
| 19              | Одномерные неадиабатические течения газа                                        | ОПК- 1                                        | Устный опрос, зачет                                      |

## Описание показателей и критериев оценивания компетенций по дисциплине «Механика жидкости и газа» на различных этапах их формирования, описание шкал оценивания

| Код     | Индикаторы    | Показатели и критерии оценивания результатов обучения |                    |               |               |
|---------|---------------|-------------------------------------------------------|--------------------|---------------|---------------|
| компете | достижения    | ниже порогового                                       | пороговый уровень  | продвинутый   | высокий       |
| нции,   | компетенций   | уровня                                                | (удовлетворительно | уровень       | уровень       |
| этапы   |               | (неудовлетворите                                      | )                  | (хорошо)      | (отлично)     |
| освоени |               | льно)                                                 |                    |               |               |
| Я       |               |                                                       |                    |               |               |
| компете |               |                                                       |                    |               |               |
| нции    |               |                                                       |                    |               |               |
| 1       | 2             | 3                                                     | 4                  | 5             | 6             |
| ОПК-1,  | ОПК-1.2       | обучающийся не                                        | обучающийся        | обучающийся   | обучающийся   |
| 4       | Определение   | знает                                                 | демонстрирует      | демонстрируе  | демонстрирует |
| семестр | характеристик | значительной                                          | знания только      | т знание      | знание        |
|         | физического   | части                                                 | основного          | материала, не | основных      |
|         | процесса      | программного                                          | материала, но не   | допускает     | законов       |
|         | (явления),    | материала,                                            | знает деталей,     | существенны   | движения      |

|         | Τ              |                    |                     |               |                 |
|---------|----------------|--------------------|---------------------|---------------|-----------------|
|         | характерного   | плохо              | допускает           | Х             | жидкости и      |
|         | для объектов   | ориентируется в    | неточности,         | неточностей,  | газов,          |
|         | профессиональ  | материале (не      | допускает           | хорошо знает  | исчерпывающе    |
|         | ной            | знает основные     | неточности в        | основные      | И               |
|         | деятельности,  | законы движения    | формулировках,      | законы        | последовательн  |
|         | на основе      | жидкости и газов), | нарушает            | движения      | о, четко и      |
|         | теоретического | не знает практику  | логическую          | жидкостей и   | логично         |
|         | И              | применения         | последовательность  | газов,        | излагает        |
|         | экспериментал  | материала,         | в изложении         | особенности   | материал,       |
|         | ьного          | допускает          | программного        | движения      | хорошо          |
|         | исследований.  | существенные       | материала,          | газа при до и | ориентируется   |
|         |                | ошибки в           | знает основные      | сверхзвуковы  | в материале, не |
|         |                | составлении        | законы движения     | х скоростях   | затрудняется с  |
|         |                | уравнений          | жидкости и газов    |               | ответом при     |
|         |                | равновесия         | особенности         |               | видоизменении   |
|         |                | жидкости и         | движения газа при   |               | заданий         |
|         |                | уравнения          | до и сверхзвуковых  |               |                 |
|         |                | Бернулли           | скоростях           |               |                 |
| ОПК-1,  | ОПК-1.3        | обучающийся не     | обучающийся не      | обучающийся   | обучающийся     |
| 4семест | Представление  | знает              | знает значительной  | демонстрируе  | демонстрирует   |
| р       | базовых для    | особенности        | части               | т знания      | знание          |
| 1       | профессиональ  | физического и      | программного        | только        | материала, не   |
|         | ной сферы      | математического    | материала,          | основного     | допускает       |
|         | физических     | моделирования      | плохо               | материала, но | существенных    |
|         | процессов и    | одномерных и       | ориентируется в     | не знает      | неточностей,    |
|         | явлений в виде | трехмерных,        | материале (не знает | деталей,      | хорошо знает    |
|         | математическо  | дозвуковых и       | основные            | допускает     | основные        |
|         | го (их)        | сверхзвуковых,     | особенности         | неточности,   | закономерност   |
|         | уравнения(й)   | ламинарных и       | физического и       | допускает     | и равновесия    |
|         |                | турбулентных       | математического     | неточности в  | жидкостей и     |
|         |                | течений            | моделирования       | формулировк   | газов,          |
|         |                | идеальной и        | одномерных и        | ах, нарушает  | особенности     |
|         |                | реальной           | трехмерных,         | логическую    | движения газа   |
|         |                | несжимаемой и      | дозвуковых и        | последовател  | при до и        |
|         |                | сжимаемой          | сверхзвуковых,      | ьность в      | сверхзвуковых   |
|         |                | жидкостей          | ламинарных и        | изложении     | скоростях       |
|         |                |                    | турбулентных        | программного  |                 |
|         |                |                    | течений идеальной   | материала,    |                 |
|         |                |                    | И                   | знает         |                 |
|         |                |                    | реальной            | основные      |                 |
|         |                |                    | несжимаемой и       | закономернос  |                 |
|         |                |                    | сжимаемой           | ти равновесия |                 |
|         |                |                    | жидкостей,          | жидкостей и   |                 |
|         |                |                    | допускает           | газов,        |                 |
|         |                |                    | существенные        | особенности   |                 |
|         |                |                    | ошибки в            | движения      |                 |
|         |                |                    | моделирования       | газа при до и |                 |
|         |                |                    | одномерных и        | сверхзвуковы  |                 |
|         |                |                    | трехмерных,         | х скоростях   |                 |
|         |                |                    | дозвуковых и        |               |                 |
|         |                |                    | сверхзвуковых       |               |                 |
|         |                |                    | течений             |               |                 |

# 3. Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы

#### 3.1. Устный отчет по лабораторным работам

Лабораторные занятия играют важную роль в выработке у обучающихся навыков применения полученных знаний для проведения лабораторных работ. Лабораторные занятия развивают научное мышление у обучающихся, позволяют проверить их знания усвоенного материала.

Тематика лабораторных занятий устанавливается на основании теоретического курса изучаемой дисциплины и представлена в программе дисциплины и методических указаниях по выполнению лабораторных работ.

#### Требования к устному отчету по лабораторным работам:

- 1. Знание основных понятий по теме лабораторного занятия.
- 2. Владение терминами и использование их при ответе.
- 3. Умение объяснить сущность проведения опыта, делать выводы и обобщения, давать аргументированные ответы.
- 4. Владение монологической речью, логичность и последовательность ответа, умение отвечать на поставленные вопросы.

#### Перечень тем лабораторных работ:

- 1. Определение режима движения жидкости.
- 2. Определение гидравлического коэффициента трения.
- 3. Определение коэффициентов местных сопротивлений и построение диаграммы пьезометрических напоров.
- 4. Истечение жидкости через малое отверстие с острой кромкой при постоянном напоре.
- 5. Истечение жидкости через малое отверстие с острой кромкой при переменном напоре.
  - 6. Испытание центробежного насоса.

Лабораторные работы выполняются в соответствии с методическими указаниями по выполнению лабораторных работ по дисциплине «Механика жидкости и газа».

#### 3.2. Текущий контроль

Текущий контроль проводится в форме устного опроса. Требования к ответу при устном опросе:

- 1. Глубина и полнота раскрытия вопроса.
- 2. Владение терминами и использование их при ответе.
- 3. Умение объяснить сущность явлений, событий, процессов и т.п., делать выводы и обобщения, давать аргументированные ответы.
- 4. Умение отвечать на сопутствующие вопросы, выражать свое мнение по обсуждаемой теме.

#### 5. Владение монологической речью.

#### Вопросы, рассматриваемые на аудиторных занятиях

- 1. Понятие жидкой и газообразной среды. Текучесть.
- 2. Гидростатическое давление и его свойства.
- 3. Единицы измерения давления.
- 4. Основной закон гидростатики. Гидростатический напор и его физический смысл.
  - 5. Поверхности равного давления.
- 6. Равновесие жидкости в поле силы тяжести. Основная формула гидростатики.
- 7. Поясните выражение «напор равен 12 метров». Относительно чего определяется напор?
- 8. Измерение давления высотой столба жидкости. Техническая атмосфера и ее величина.
  - 9. Определение величины силы давления на плоские стенки.
  - 10. Что понимают под «центром давления». Как определить центр давления.
  - 11. Два метода описания движения жидкости и газа.
- 12. Струйная модель движения жидкости и газа (линия тока, трубка тока, элементарная струйка, расход).
  - 13. Понятие потока жидкости. Средняя скорость потока.
  - 14. Модель идеальной (невязкой) жидкости.
- 15. Уравнение Бернулли для потока реальной жидкости. Два вида потерь напора. Принцип суммирования потерь напора.
  - 16. Два режима движения жидкости. Число Рейнольдса.
- 17. Турбулентное движение жидкости. Турбулентные касательные напряжения. Одномерные потоки жидкостей и газов.
- 18. Определение потерь напора по длине при равномерном турбулентном режиме. Формула Дарси Вейсбаха.
  - 19. Пять зон гидравлического сопротивления.
  - 20. Определение местных потерь напора. Формула Вейсбаха.
  - 21. Суммирование потерь напора.
- 22. Расчет коротких трубопроводов: истечение через короткий трубопровод в атмосферу.
- 23. Расчет длинных трубопроводов. Последовательное и параллельное соединение труб.
  - 24. Свойства газовой среды.
  - 25. Уравнение состояния.
  - 26. 1-й закон термодинамики. Теплоемкость.
  - 27. Адиабатический процесс. Формула Майера.
  - 28. Энтальпия. 2-й закон термодинамики. Энтропия.
  - 29. Скорость звука. Число Маха.
  - 30. Уравнение неразрывности.
  - 31. Уравнение Бернулли Сен-Венана.

- 32. Температура торможения.
- 33. Истечение газа из котла под большим давлением. Формула Сен-Венана Ванцеля.
  - 34. Максимальная скорость истечения.
  - 35. Измерение скорости в дозвуковом потоке.
  - 36. Связь между скоростью течения газа и формой его струи. Сопло Лаваля.
  - 37. Основные соотношения для прямого скачка уплотнения.
  - 38. Формула Прандтля.
- 39. Ударная адиабата. Невозможность существования скачков разряжения в адиабатических процессах (теорема Цемплена).
  - 40. Измерение скоростей в сверхзвуковом потоке.
  - 41. Течения газа с трением.
  - 42. Случай теплоизолированного газопровода.
  - 43. Изотермическое течение в газопроводе.
  - 44. Течение подогреваемого газа при больших скоростях.
  - 45. О распространении детонации и горения в газах.

#### Вопросы для самостоятельного изучения

- 1. Физические свойства жидкостей и газов.
- 2. Плотность и удельный вес жидкостей.
- 3. Системы единиц измерений СИ и МКГСС.
- 4. Закон Паскаля. Простейшие гидротехнические механизмы.
- 5. Закон сообщающихся сосудов.
- 6. Плавание тел. Закон Архимеда.
- 7. Схема применения уравнения Бернулли.
- 8. Гидравлическая классификация движений.
- 9. Мероприятия по предупреждению и снижению величины гидроудара.
- 10. Истечение жидкости через насадки.
- 11. Различные типы насадок.
- 12. Распространение малых возмущений в газе.
- 13. Скорость звука в движущемся газе.
- 14. Связь между скоростью течения газа и формой его струи.
- 15. Звуковая волна как скачок уплотнения бесконечно малой интенсивности.
  - 16. Прямоточный реактивный двигатель.
  - 17. Элементарная ударная труба.

#### 3.3. Промежуточная аттестация

В соответствии с учебным планом по направлению подготовки 08.03.01 Строительство установлена промежуточная аттестация в виде зачета 4 - семестр.

#### Вопросы, выносимые на зачет

- 1. Понятие жидкой и газообразной среды. Текучесть.
- 2. Гидростатическое давление и его свойства.
- 3. Основной закон гидростатики. Гидростатический напор и его физический смысл.
- 4. Равновесие жидкости в поле силы тяжести. Основное уравнение гидростатики.
- 5. Определение гидростатического давления в случае разнородных несмешивающихся жидкостей.
- 6. Поясните выражение «напор равен 12 метров». Относительно чего определяется напор?
- 7. Измерение давления высотой столба жидкости. Техническая атмосфера и ее величина.
  - 8. Определение величины силы давления на плоские стенки.
  - 9. Два метода описания движения жидкости.
- 10. Струйная модель движения жидкости (линия тока, трубка тока, элементарная струйка, расход).
- 11. Понятие потока жидкости. Гидравлическая модель потока. Средняя скорость потока.
  - 12. Модель идеальной (невязкой) жидкости.
  - 13. Уравнение Бернулли для потока реальной жидкости.
  - 14. Физический смысл гидродинамического напора. Виды напора.
  - 15. Схема применения уравнения Бернулли.
  - 16. Два вида потерь напора. Принцип суммирования потерь напора.
  - 17. Два режима движения жидкости. Число Рейнольдса.
- 18. Турбулентное движение жидкости. Турбулентные касательные напряжения.
  - 19. Одномерные потоки жидкостей и газов.
- 20. Определение потерь напора по длине при равномерном турбулентном режиме. Формула Дарси Вейсбаха.
  - 21. Пять зон гидравлического сопротивления.
  - 22. Определение местных потерь напора. Формула Вейсбаха.
  - 23. Понятие длинных и коротких трубопроводов.
  - 24. Расчет коротких трубопроводов. Расчет длинных трубопроводов.
- 25. Истечение жидкости из малого отверстия в тонкой стенке. Определение расхода.
  - 26. Свойства газовой среды.
  - 27. Уравнение состояния.
  - 28. 1-й закон термодинамики. Теплоемкость.
  - 29. Адиабатический процесс. Формула Майера.
  - 30. Энтальпия. 2-й закон термодинамики.
  - 31. Энтропия.
  - 32. Скорость звука. Число Маха.

- 33. Уравнение неразрывности.
- 34. Интеграл Бернулли.
- 35. Уравнение Бернулли Сен-Венана.
- 36. Температура торможения.
- 37. Истечение газа из котла под большим давлением. Формула Сен-Венана Ванцеля.
  - 38. Максимальная скорость истечения.
  - 39. Сопло Лаваля.
  - 40. Основные соотношения для прямого скачка уплотнения.
  - 41. Формула Прандтля.
- 42. Ударная адиабата. Невозможность существования скачков разряжения в адиабатических процессах (теорема Цемплена).
  - 43. Измерение скоростей в сверхзвуковом потоке.
  - 44. Течения газа с трением.
  - 45. Случай теплоизолированного газопровода.
  - 46.Изотермическое течение в газопроводе.
  - 47. Течение подогреваемого газа при больших скоростях.
  - 48. О распространении детонации и горения в газах.
  - 49. Прямоточный реактивный двигатель.
  - 50. Элементарная ударная труба.

## 4. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций

### 4.1. Процедуры оценивания знаний, умений, навыков и (или) опыта деятельности

Контроль результатов обучения обучающихся, этапов и уровня формирования компетенций по дисциплине «Механика жидкости и газа» осуществляется через проведение входного, текущего, рубежных, выходного контролей и контроля самостоятельной работы

Формы текущего, промежуточного и итогового контроля и контрольные задания для текущего контроля разрабатываются кафедрой исходя из специфики дисциплины, и утверждаются на заседании кафедры.

## 4.2 Критерии оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы

Описание шкалы оценивания достижения компетенций по дисциплине приведено в таблице 5.

Таблица 5

| V                             | 0                                                           |                 |                                                | Таолица 3                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-------------------------------|-------------------------------------------------------------|-----------------|------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Уровень освоения компетенци и | Отметка по пятибалльной системе (промежуточная аттестация)* |                 |                                                | Описание                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| высокий                       | «отлично»                                                   | «зачтено»       | «зачтено<br>(отлично)<br>»                     | Обучающийся обнаружил всестороннее, систематическое и глубокое знание учебного материала, умеет свободно выполнять задания, предусмотренные программой, усвоил основную литературу и знаком с дополнительной литературой, рекомендованной программой. Как правило, обучающийся проявляет творческие способности в понимании, изложении и использовании материала                                                                                      |
| базовый                       | «хорошо»                                                    | «зачтено»       | «зачтено<br>(хорошо)<br>»                      | Обучающийся обнаружил полное знание учебного материала, успешно выполняет предусмотренные в программе задания, усвоил основную литературу, рекомендованную в программе                                                                                                                                                                                                                                                                                |
| пороговый                     | «удовлетвори<br>тельно»                                     |                 | «зачтено<br>(удовлетв<br>орительно<br>)»       | Обучающийся обнаружил знания основного учебного материала в объеме, необходимом для дальнейшей учебы и предстоящей работы по профессии, справляется с выполнением практических заданий, предусмотренных программой, знаком с основной литературой, рекомендованной программой, допустил погрешности в ответе на экзамене и при выполнении экзаменационных заданий, но обладает необходимыми знаниями для их устранения под руководством преподавателя |
| _                             | «неудов-<br>летвори-<br>тельно»                             | «не<br>зачтено» | «не зачтено<br>(неудовлет-<br>ворительно)<br>» | знаниях основного учебного материала,                                                                                                                                                                                                                                                                                                                                                                                                                 |

#### 4.2.1. Критерии оценки устного ответа при промежуточной аттестации

При ответе на вопрос обучающийся демонстрирует:

знания: основные физические свойства жидкостей и газов, общие законы и уравнения статики, кинематики и динамики жидкостей и газов, особенности физического и математического моделирования одномерных и трехмерных, дозвуковых и сверхзвуковых, ламинарных и турбулентных течений идеальной и реальной несжимаемой и сжимаемой жидкостей;

умения: рассчитывать гидродинамические параметры потока жидкости (газа) при внешнем обтекании тел и течении в каналах (трубах), проточных частях гидрогазодинамических машин; проводить гидравлический расчет трубопроводов; рассчитывать температурные поля (поля концентраций веществ) в потоках технологических жидкостей и газов.

**владение навыками:** проведения типовых гидродинамических расчетов гидромеханического оборудования и трубопроводов, основными методами измерений, обработки результатов и оценки погрешностей измерений.

#### Критерии оценки

| 1                 | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| отлично           | обучающийся демонстрирует: - знание способов гидростатического и гидравлического расчета напорных трубопроводов при установившемся и неустановившемся движении жидкости и газа, причины и механизм возникновения ударных волн в газе, исчерпывающе и последовательно, четко и логично излагает материал, хорошо ориентируется в материале, не затрудняется с ответом при видоизменении заданий; - умение выполнять гидравлические расчеты сложных трубопроводов; использовать методику расчета трубопроводов на гидравлический удар,                                                                                                                         |
|                   | истечений жидкости и газа через отверстия и насадки; - успешное и системное владение навыками инженерных гидравлических расчетов, истечения газа из котла и движения газа в длинных трубопроводах.                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| хорошо            | обучающийся демонстрирует: - знание материала, не допускает существенных неточностей, хорошо знает основные закономерности равновесия жидкостей и газов, особенности движения газа при до и сверхзвуковых скоростях; - в целом успешное, но содержащие отдельные пробелы, умение применять уравнение Бернулли для потока реальной жидкости и газа, выполнил основное количество заданий самостоятельной работы, предусмотренной программой дисциплины; - в целом успешное, но содержащее отдельные пробелы или сопровождающееся отдельными ошибками владение навыками выполнения гидростатических расчетов и гидравлических расчетов напорных трубопроводов. |
| удовлетворительно | обучающийся демонстрирует:  - знания только основного материала, но не знает деталей, допускает неточности, допускает неточности в формулировках, нарушает логическую последовательность в изложении программного материала, знает основные закономерности равновесия жидкостей и газов, особенности движения газа при до и сверхзвуковых скоростях;  - в целом успешное, но не системное умение применять уравнение Бернулли для потока реальной жидкости и газа, выполнил минимальное количество заданий самостоятельной работы, предусмотренной программой                                                                                                |

|                     | дисциплины;                                                              |  |  |  |
|---------------------|--------------------------------------------------------------------------|--|--|--|
|                     | - в целом успешное, но не системное владение навыками выполнения         |  |  |  |
|                     | гидростатических расчетов и гидравлических расчетов напорных             |  |  |  |
|                     | трубопроводов.                                                           |  |  |  |
| неудовлетворительно | обучающийся:                                                             |  |  |  |
|                     | - не знает значительной части программного материала, плохо              |  |  |  |
|                     | ориентируется в материале, не знает основные закономерности равновесия и |  |  |  |
|                     | движения жидкостей и газов, допускает существенные ошибки в              |  |  |  |
|                     | составлении уравнений равновесия жидкости;                               |  |  |  |
|                     | не умеет применять уравнение Бернулли, неуверенно, с большими            |  |  |  |
|                     | затруднениями выполняет самостоятельную работу, большинство РГР и        |  |  |  |
|                     |                                                                          |  |  |  |
|                     | лабораторных работ, предусмотренных программой дисциплины, не            |  |  |  |
|                     | выполнено;                                                               |  |  |  |
|                     | -обучающийся не владеет навыками выполнения гидростатических расчетов    |  |  |  |
|                     | и гидравлических расчетов напорных трубопроводов, допускает              |  |  |  |
|                     | существенные ошибки в определении понятий давления, средней скорости,    |  |  |  |
|                     | расхода жидкости, потерь напора.                                         |  |  |  |

#### 4.2.2. Критерии оценки ответа при устном отчете по лабораторным работам

При выполнении лабораторных работ обучающийся демонстрирует:

**знания:** гидродинамических параметров и режимов движения жидкости, потерь напора по длине и местных потерь напора, коэффициентов истечения через малое отверстие в тонкой стенке, подачи и напора центробежного насоса;

**умения:** производить измерения расхода и пьезометрического напора, вычислять площади живых сечений и средних скоростей потока жидкости, гидродинамических напоров;

владение навыками: обработки результатов измерений, работы с таблицами с помощью приложения Microsoft Office Excel.

#### Критерии оценки ответа при устном отчете по лабораторным работам

| 1       | 2                                                                         |  |  |  |
|---------|---------------------------------------------------------------------------|--|--|--|
| отлично | обучающийся демонстрирует:                                                |  |  |  |
|         | - знание гидродинамических параметров и режимов движения жидкости,        |  |  |  |
|         | потерь напора по длине и местных потерь напора, коэффициентов истечения   |  |  |  |
|         | через малое отверстие в тонкой стенке, подачи и напора центробежного      |  |  |  |
|         | насоса;                                                                   |  |  |  |
|         | - умение производить измерения расхода и пьезометрического напора,        |  |  |  |
|         | вычислять площади живых сечений и средних скоростей потока жидкости,      |  |  |  |
|         | гидродинамических напоров;                                                |  |  |  |
|         | - владение навыками обработки результатов измерений, работы с таблицами с |  |  |  |
|         | помощью приложения Microsoft Office Excel, отличным оформлением отчета.   |  |  |  |
| хорошо  | обучающийся демонстрирует:                                                |  |  |  |
|         | - знание в целом основных гидродинамических параметров и режимов          |  |  |  |
|         | движения жидкости, потерь напора по длине и местных потерь напора,        |  |  |  |
|         | некоторых коэффициентов истечения через малое отверстие в тонкой стенке,  |  |  |  |
|         | подачи и напора центробежного насоса;                                     |  |  |  |
|         | - умение в целом производить измерения основных гидравлических            |  |  |  |
|         | параметров жидкости, вычислять площади живых сечений и средних            |  |  |  |
|         | скоростей потока жидкости, гидродинамических напоров;                     |  |  |  |

| - владение в целом навыками обработки результатов измерений, работы с     |  |  |  |  |
|---------------------------------------------------------------------------|--|--|--|--|
| таблицами с помощью приложения Microsoft Office Excel, хорошим            |  |  |  |  |
| оформлением отчета.                                                       |  |  |  |  |
| обучающийся демонстрирует:                                                |  |  |  |  |
| - не твердое знание основных гидродинамических параметров и режимов       |  |  |  |  |
| движения жидкости, потерь напора по длине и местных потерь напора,        |  |  |  |  |
| некоторых коэффициентов истечения через малое отверстие в тонкой стенке,  |  |  |  |  |
| подачи и напора центробежного насоса;                                     |  |  |  |  |
| - умение производить измерения основных гидравлических параметров         |  |  |  |  |
| жидкости, вычислять площади живых сечений и средних скоростей потока      |  |  |  |  |
| жидкости, гидродинамических напоров сопровождается неточностями и         |  |  |  |  |
| ошибками;                                                                 |  |  |  |  |
| - слабым владением навыками обработки результатов измерений, работы с     |  |  |  |  |
| таблицами с помощью приложения Microsoft Office Excel, небрежным          |  |  |  |  |
| оформлением отчета.                                                       |  |  |  |  |
| обучающийся:                                                              |  |  |  |  |
|                                                                           |  |  |  |  |
| - не знает основных гидродинамических параметров и режимов движения       |  |  |  |  |
| жидкости, потерь напора по длине и местных потерь напора, некоторых       |  |  |  |  |
| коэффициентов истечения через малое отверстие в тонкой стенке, подачи и   |  |  |  |  |
| напора центробежного насоса;                                              |  |  |  |  |
| - не умеет производить измерения основных гидравлических параметров       |  |  |  |  |
| жидкости, вычислять площади живых сечений и средних скоростей потока      |  |  |  |  |
| жидкости, гидродинамических напоров сопровождается ошибками;              |  |  |  |  |
| - не владеет навыками обработки результатов измерений, работы с таблицами |  |  |  |  |
| с помощью приложения Microsoft Office Excel, не представил отчет.         |  |  |  |  |
|                                                                           |  |  |  |  |

Разработчик: доцент Миркина Е.Н.

15