Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Соловьев Дмитрий Александрович

Должность: ректор ФГБОУ ВО Вавиловский университет

Дата подписания: 23.12.2024 09:32:51

Уникальный программны й ключ: министерство сельского хозяйства российской федерации

528682d78e671e566ab07f01fe1ba2172f735a12

Федеральное государственное бюджетное образовательное учреждение высшего образования «Саратовский государственный аграрный университет имени Н.И. Вавилова»

УТВЕРЖДАЮ

Заведующий кафедрой ______/Камышова Г. Н./_ «£Т» авијета 2019

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ

Дисциплина

МАТЕМАТИКА

Направление подготовки

35.03.04 Агрономия

Направленность

Селекция и семеноводство с/х культур

(профиль)

Квалификация Выпускника

Бакалавр

Нормативный срок

Обучения

4 года

Кафедра-разработчик

Математика, механика и инженерная графика

Ведущий преподаватель: доцент, Терехова Н. Н.

Разработчик(и): доцент, Терехова Н. Н.

Саратов 2019

Содержание

1. Перечень компетенций с указанием этапов их формирования в процессе освоения ОПОП	.2
2. Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания	. 3
3. Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы	. 4
4. Методические материалы, определяющие процедуры оценивания знаний умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций	

1. Перечень компетенций с указанием этапов их формирования в процессе освоения ОПОП

В результате изучения дисциплины «Математика» обучающиеся, в соответствии с ФГОС ВО по направлению подготовки /35.03.04 Агрономия, утверждённого приказом Министерства образования и науки РФ от 26.07.2017 г. № 699, формируют следующие компетенции, указанные в таблице 1.

Таблица 1 Формирование компетенций в процессе изучения дисциплины «Математика»

	Компетенция	Индикаторы	Этапы	Виды	Оценочные
Код	Наименование	достижения компетенций	формиров ания компетен ции в процессе освоения ОПОП (семестр)	занятий для формиров ания компетен ции	средства для оценки уровня сформирован ности компетенции
1	2	3	4	5	6
ОПК-1	Способен решать типовые задачи профессиональной деятельности на основе знаний основных законов математических и естественных наук с применением информационнокоммуникационных технологий	ОПК-1.1 Использует знания основных законов математических наук для решения стандартных задач в агрономии	1	Лекции, практическ ие занятия	Контрольная работа-1, 2, 3 Тестирование-1, 2, 3

Примечание:

Компетенции ОПК-1 – также формируются в ходе освоения дисциплин: физика, информатика, химия, экология, генетика, основы эволюции, генетика популяций и количественных признаков, генетика и селекция на устойчивость к болезням и вредителям, частная генетика сельскохозяйственных культур, цитология, препарирование биологических объектов, цифровые технологии в селекции и семеноводстве, статистические методы обработки данных селекционных экспериментов, учебная практика: ознакомительная практика ПО почвоведению, учебная ознакомительная практика по ботанике, учебная практика: ознакомительная производственная практика: технологическая генетике, практика, государственная итоговая аттестация, выполнение и защита выпускной квалификационной работы

2. Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

Таблица 2

Перечень оценочных материалов

No	Наименование	Краткая характеристика оценочного	Представление
Π/Π	оценочного	материала	оценочного средства в
	материала		OM
1	контрольная	средство проверки умений применять	комплект контрольных
	работа	полученные знания для решения задач	заданий по вариантам
		определенного типа по разделу или	
		нескольким разделам	
2	тестирование	метод, который позволяет выявить уровень	банк тестовых заданий
		знаний, умений и навыков, способностей и	
		других качеств личности, а также их	
		соответствие определённым нормам путем	
		анализа способов выполнения	
		обучающимися ряда специальных заданий	
3	устный опрос	метод контроля знаний обучающихся, при	Перечень вопросов для
		устном опросе устанавливается	устного опроса.
		непосредственный контакт между	Перечень вопросов для
		преподавателем и обучающимся, в	самостоятельной работы.
		процессе которого преподаватель получает	
		широкие возможности для изучения	
		индивидуальных особенностей усвоения	
		обучающимися учебного материала.	

Таблица 3

Программа оценивания контролируемой дисциплины «Математика»

№ п/п	Контролируемые разделы (темы дисциплины)	Код контролируемо й компетенции (или ее части)	Наименование оценочного средства
1	2	3	4
1.	Раздел 1 Предел и непрерывность функции одной переменной.	ОПК-1	устный опрос, контрольная №1, тестирование №1
2.	Раздел 2 Дифференцирование функции одной переменной.	ОПК-1	устный опрос, контрольная работа№2, тестирование №2
3.	Раздел 3 Интегральное исчисление функции 1-ой переменной.	ОПК-1	устный опрос, контрольная №3, тестирование №3

«Математика» на различных этапах их формирования, описание шкал оценивания

Код	Индикаторы	Показатели и критерии оценивания результатов обучения							
компетен	достижения	ниже порогового	пороговый	продвинуты	высокий				
ции,	компетенций	уровня	уровень	й уровень	уровень				
этапы		(неудовлетворите	(удовлетворите	(хорошо)	(отлично)				
освоения		льно)	льно)	1 /	,				
компетен		,	,						
ции									
1	2	3	4	5	6				
ОПК-1,	ОПК-1.1	обучающийся не	обучающийся	обучающийся	обучающийс				
1 семестр	Использует	знает значительной	демонстрирует	демонстрирует	Я				
1 семестр	знания	части программного	знания только	знание	демонстриру				
	основных	материала -основных	основного	материала-	ет знание				
	законов	понятий	материала-	основные	материала-				
	математически	математического	основные понятия	понятия	основные				
	х наук для	анализа, плохо	математического	математическо	понятия				
	решения	ориентируется в	анализа, но не	го анализа, не	математическ				
	стандартных	материале.	знает деталей,	допускает	ого анализа,				
	задач в		допускает	существенных	исчерпываю				
	агрономии		неточности в	неточностей	ще и				
			формулировках,		последовател				
			тем самым		ьно, чётко и				
			нарушает		логично				
			логическую		излагает				
			последовательност		материал,				
			ь в изложении		хорошо				
			программного материала		ориентируетс я в				
			материала		материале, не				
					затрудняется				
					с ответом				
					при				
					видоизменен				
					ии заданий				

3. Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы

3.1. Входной контроль

Цель проведения входного контроля: определение уровня, знаний, умений и навыков обучающихся, а также степени усвоения ими программы основных разделов школьного курса математики и предшествующих им семестров обучения по направлению подготовки **05.03.04 Агрономия** по данному курсу.

Вопросы входного контроля

1. Действительные числа. Натуральные и целые числа. Делимость чисел. Основная теорема арифметики натуральных чисел. Рациональные, иррациональные, действительные числа, числовая прямая. Числовые

неравенства. Аксиоматика действительных чисел. Модуль действительного числа. Метод математической индукции.

- **2.** Числовые функции. Определение числовой функции и способы ее задания. Свойства функций. Периодические и обратные функции.
- 3. Тригонометрические функции. Числовая окружность на координатной плоскости. Определение синуса, косинуса, тангенса и котангенса. Тригонометрические функции числового и углового аргумента, их свойства и графики. Сжатие и растяжение графиков тригонометрических функций. Обратные тригонометрические функции.
- **4.** Тригонометрические уравнения и неравенства. Простейшие тригонометрические уравнения и неравенства. Методы решения тригонометрических уравнений: метод замены переменной, метод разложения на множители, однородные тригонометрические уравнения.
- 5. Преобразование тригонометрических выражений. Формулы сложения, приведения, двойного аргумента, понижения степени. Преобразование суммы тригонометрических функций в произведение и произведения в сумму. Методы решения тригонометрических уравнений (продолжение).
- **6.** Многочлены. Многочлены от одной и нескольких переменных. Теорема Безу. Схема Горнера. Симметрические и однородные многочлены. Уравнения высших степеней.
- 7. Степени и корни. Степенные функции Понятие корня л-й степени из действительного числа. Функции, их свойства и графики. Свойства корня п-й степени. Преобразование выражений, содержащих радикалы. Обобщение понятия о показателе степени. Степенные функции, их свойства и графики. Дифференцирование и интегрирование. Извлечение корней п-й степени из комплексных чисел.
- 8. Показательная и логарифмическая функции Показательная функция, ее свойства и график. Показательные уравнения и неравенства. Понятие логарифма. Функция, ее свойства и график. Свойства логарифмов. Логарифмические уравнения и неравенства. Дифференцирование показательной и логарифмической функций.
- 9. Уравнения и неравенства. Системы уравнений неравенств Равносильность уравнений. Общие методы решения уравнений. Уравнения с модулями. Иррациональные уравнения. Доказательство неравенств. Решение рациональных неравенств с одной переменной. Неравенства с модулями. Иррациональные неравенства. Уравнения и неравенства с двумя переменными. Диофантовы уравнения. Системы уравнений. Уравнения и неравенства с параметрами.
- 10. Повторение планиметрии. Свойство биссектрисы угла треугольника. Решение треугольников. Вычисление биссектрис, медиан, высот, радиусов вписанной и описанной окружностей. Формулы площади треугольника: формула Герона, выражение площади треугольника, через радиус вписанной и описанной окружностей. Вычисление углов с вершиной

внутри и вне круга, угла между хордой и касательной. Теорема о произведении отрезков хорд. Теорема о касательной и секущей. Теорема о сумме квадратов сторон и диагоналей параллелограмма. Вписанные и описанные многоугольники. Свойства и признаки вписанных и описанных четырёхугольников. Геометрические места точек. Решение задач с помощью геометрических преобразований и геометрических мест. Теорема Чевы и теорема Менелая.

- **11.** Введение. Основные понятия стереометрии (точка, прямая, плоскость, пространство). Понятие об аксиоматическом способе построения геометрии. Аксиомы стереометрии. Некоторые следствия из аксиом.
- Параллельность прямых И плоскостей. Пересекающиеся, параллельные и скрещивающиеся прямые. Угол между прямыми в пространстве. Параллельность прямой и плоскости, признаки и свойства. Параллельность плоскостей, признаки и свойства. Тетраэдр. Параллелепипед. Задачи построение сечений тетраэдра параллелепипеда. И Перпендикулярность прямых и плоскостей. Перпендикулярность прямых. Перпендикулярность прямой и плоскости, признаки и свойства. Расстояния от точки до плоскости.
- 13. Перпендикуляр и наклонная к плоскости. Теорема о трёх перпендикулярах. Расстояние от прямой до плоскости. Расстояние между параллельными плоскостями. Расстояние между скрещивающимися прямыми. Двугранный угол, линейный угол двугранного угла. Признак перпендикулярности двух плоскостей. Прямоугольный параллелепипед.
- Многогранники. Понятие многогранника. Вершины, многогранника. Многогранные углы. грани. Развёртка Выпуклые многогранники. Теорема Эйлера. Призма, ее основания, боковые ребра, высота, боковая поверхность. Прямая и наклонная призма. Правильная призма. Параллелепипед. Куб. Пирамида, ее основание, боковые ребра, 12 высота, боковая поверхность. Треугольная пирамида. Правильная пирамида. Усечённая пирамида. Сечения многогранников. Построение Представление о правильных многогранниках (тетраэдр, куб, октаэдр, додекаэдр и икосаэдр.
- **15.** Векторы в пространстве. Понятие вектора в пространстве. Сложение и вычитание векторов. Умножение вектора на число. Компланарные векторы.
- **16.** Метод координат в пространстве. Движения. Координаты точки и координаты вектора. Скалярное произведение векторов. Уравнение плоскости. Движения. Преобразование подобия.
- 17. Цилиндр. Конус. Шар. Понятие цилиндра. Площадь поверхности цилиндра. Понятие конуса. Площадь поверхности конуса. Усечённый конус. Сфера и шар. Взаимное расположение сферы и плоскости. Касательная плоскость к сфере. Площадь сферы.
- 18. Объём тел. Понятие об объёме тела. Отношение объемов подобных тел. Формулы объёма куба, параллелепипеда, призмы, цилиндра.

Формулы объёма пирамиды и конуса. Формулы объема шара и площади сферы.

3.2. Контрольные работы

Цель контрольной работы: проверка качества и уровня сформированных знаний, умений и навыков обучающихся, обнаружение пробелов в знаниях, умениях и навыках с целью внесения корректировки в процесс обучения, а также предоставление рекомендаций каждому обучающемуся по устранению ошибок.

Тематика контрольных работ устанавливается в соответствии с изученной темой, количество вариантов заданий — по теме используется три варианта заданий.

Приводится пример одного из вариантов контрольной работы по каждой теме.

Контрольные работы №1 Тема "Предел функции одной переменной". Вариант 1

Найти предел функции:

1.
$$\lim_{x \to 1} \frac{2x^2 + x - 3}{x^2 - 2x + 1};$$

2.
$$\lim_{x \to 3} \frac{\sqrt{2x+3}-3}{x^2-9};$$

$$\lim_{x\to\infty} \left(\frac{x+2}{x-5}\right)^{3x-1}.$$

Контрольные работы №2

Тема "Применение производной к исследованию функции".

Вариант 1

Исследовать методами дифференциального исчисления функцию и, используя результаты, построить ее график.

1.
$$y = \frac{4x}{4 + x^2}.$$
2.
$$y = \frac{x^2 - 1}{x^2 + 1}.$$

$$y = \frac{(x + 1)^2}{x^2 - 1}$$

Контрольная работа №3

Тема "Интегрирование рациональных дробей. Метод неопределенных коэффициентов".

Вариант 1

1. Вычислить интеграл от простейшей дроби $\int \frac{12}{(x+2)^3} dx$

- **2.** Вычислить интеграл методом неопределённых коэффициентов $\int \frac{7x+4}{(x-3)(x+2)} dx$
- **3.** Определить метод интегрирования и проинтегрировать $\int \frac{3x+8}{x^2+3x-10} dx$

3.3. Тестовые задания

Цель тестовых заданий: получить ответ от обучающегося, на основе которого может быть сделан вывод о его знаниях, умениях и навыках из определённого раздела курса.

Тематика тестовых заданий устанавливается в соответствии с изученным разделом или темой, количество вариантов заданий — по теме используется три варианта заданий.

Приводится пример одного из вариантов теста по каждой теме.

Тест №1

Тема "Предел функции одной переменной".

- 1. Отметьте верные утверждения
- Ситуации, когда бесконечно большие величины делят друг друга или вычитают друг из друга это ситуация неопределённости
- произведение бесконечно большой величины и функции, которая при той же базе не стремится к нулю, есть ограниченная функция
 - односторонние пределы всегда меньше двустороннего

Ответы на тесты

- 2. Произведение бесконечно большой и малой величин представляет собой...
 - бесконечно малую величину
 - ситуацию неопределённости
 - ограниченную функцию
 - бесконечно большую величину

3. Выберите два варианта ответов

Предел функции может...

Варианты ответов:

- равняться бесконечности.
- равняться числу.
- стремиться сразу к двум числам
- 4. Выберите один вариант ответа

Первый член числовой последовательности $\frac{\sqrt{(n+1)(n+7)}}{n+3}$ равен...

Варианты ответов:

- 4
- 1
- 2
- 3

5. Выберите один вариант ответа

На числовой прямой дана точка x = 5,3. Тогда ее « ϵ -окрестностью» может являться интервал ...

Варианты ответов:

- (4,9;5,3)
- (5,3;5,7)
- (5,1;5,8)
- (5,1;5,5)
- **6.** $\lim_{x \to 4} \frac{x^2 16}{2x^2 7x 4}$ paseн
- A) $\frac{1}{2}$
- $\mathbf{B)} \quad \frac{x+4}{2x+1}$
- **C**) 16/7
- **D**) 8/9
- 7. Вычислить $\lim_{x \to +\infty} \frac{\sqrt{2x^2 + 3} + \sqrt{x} 1}{x + 3}$
- A) $\sqrt{2}$
- **B**) 2/3
- **C**) -1/3
- **D**) ∞
- **8.** Для обозначения различных меняющихся величин применяют термин
 - а) функция
 - б) предел
 - в) аргумент
 - г) переменная
 - 9. Данная формула является формулой второго замечательного предела.
 - a) $\lim_{x\to\infty} (1+\frac{1}{x})^x = e$
 - $6) \lim_{x \to 0} \frac{\sin x}{x} = 1$
 - $\mathbf{B}) \lim_{x \to x_0} f(x) = A$
 - г) ответ отсутствует

10. Установить соответствие между 1 буквой и 1 цифрой

а) аргумент - это	1	не чётная
б) множество всех возможных значений	2	непрерывная
переменной х - это		
в) если для всех значения аргумента $f(-x) = f(x)$,	3	чётная
то эта функция		

г) если для всех значений аргумента $f(-x) = -f(x)$	4	область определения функции
то эта функция		

	Тест №1									
№	1	2	3	4	5	6	7	8	9	10
задания										
Ответ	1	2	1,2	2	4	D	A	Γ	A	A-2
										Б-4
										B-3
										Γ-1

Тест №2

Тема "Дифференцирование функции одной переменной".

- Производная функции $y = \sin^3 5x$ равна: 1.
- a) $v' = 5\cos^3 5x$
- b) $y' = 3\sin^2 5x$
- c) $y' = 15\sin^2 5x \cos 5x$
- d) $y' = 15\sin^2 5x$
- Пусть $f: X \to R$, a-предельная точка множества X, $a \in X$. Производной функции f в точке a называется
 - A) $\lim f(x)$

B)
$$\lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

$$\begin{array}{ccc}
x \to a & x \to a & x \to a \\
\mathbf{C}) \lim_{\Delta x \to 0} \frac{f(a + \Delta x) - f(a)}{\Delta x} & \mathbf{D}) & \lim_{x \to a} (f(x) - f(a))
\end{array}$$

D)
$$\lim_{x \to a} (f(x) - f(a))$$

3. Пусть $f: X \to R$, a-предельная точка множества X, $a \in X$. Функция f называется дифференцируемой в точке a, если

- **A)** $\exists \kappa$. $\lim_{x \to a} f(x) = f(a)$
- **B**) $\exists \kappa. \lim_{\Delta x \to 0} \frac{f(a + \Delta x) f(a)}{\Delta x}$
- C) $\exists \kappa. \lim_{\Delta x \to 0} \frac{\Delta f(a)}{\Delta x}$
- **D**) f непрерывна в точке a

Пусть $f: X \to R$, a-предельная точка множества $X, a \in X$, fдифференцируема в точке a. Дифференциалом функции f в точке называется и df(a)= _____

- Выберите верное утверждение:
- **А)** если f непрерывна в точке a, то она дифференцируема в точке a
- **В)** если f дифференцируема в точке a, то она непрерывна в точке a
- **С)** если f непрерывна в точке a, то она имеет конечную производную в точке а
- если f дифференцируема в точке a, то она имеет конечную производную в точке а

	6.	Пусть	f 1	\mathbf{a}	дифференцируемы	В	точке	<i>a</i> .	Тогда	функции
$f \pm g$; <i>f</i>	$g; \frac{f}{g}$	(g(a)	≠ 0)			_ в точ	ике <i>с</i>	и.	
	(f ±	g)'=		; (<i>f</i>	$(x \cdot g)' = \underline{\qquad}; (x \cdot g)' = \underline{\qquad};$	$\frac{f}{g}$)'	=		_ (если g	$g(a) \neq 0$

7. Найдите производную функции $f(x) = \cos^4 x$:

A)
$$f'(x) = -4\sin x \cos^3 x$$

B)
$$f'(x) = 4\sin x \cos^3 x$$

C)
$$f'(x) = 4\sin x \cos x$$

D)
$$f'(x) = -4\sin^3 x \cos x$$

8. Чему равна производная функции $f(x) = (5-x^2)^{10}$:

A)
$$f'(x) = -20x(5-x^2)^9$$

B)
$$f'(x) = 2x(5-x^2)^9$$

C)
$$f'(x) = 10(5-x^2)^9$$

D)
$$f'(x) = -10x(5-x^2)^9$$

9. Найдите производную функции $f(x) = x \cdot \operatorname{arctg} 2x$:

A)
$$f'(x) = \text{arctg } 2x + \frac{x}{1 + 4x^2}$$

B)
$$f'(x) = \frac{x}{1+x^2}$$

C)
$$f'(x) = \arctan 2x + \frac{2x}{1+x^2}$$

D)
$$f'(x) = \frac{2x}{1+4x^2} + \operatorname{arctg} 2x$$

10. Чему равна производная функции $f(x) = \frac{x^2 + 3x}{x^2 - 1}$:

A)
$$f'(x) = -\frac{9x^2 + 2x + 3}{(x^2 - 1)^2}$$

B)
$$f'(x) = -\frac{3x^2 + 2x + 3}{(x^2 - 1)^2}$$

C)
$$f'(x) = \frac{3x^2 + 2x + 3}{(x^2 - 1)^2}$$

D)
$$f'(x) = \frac{3x^2 + 2x + 3}{x^2 - 1}$$

	Тест №2											
№	1	2	3	4	5	6	7	8	9	10		
задания												
Ответ	C	B, C	B, C	Главная часть приращения	B, D	Диффере	A	A	D	В		
				функции в точке a ;		нцируемы						
				$f'(a) \cdot dx$;						

Тест №3

Тема "Интегрирование функции одной переменной".

1. Пусть функции f, F определены на множестве X. Функция F называется первообразной функции f на множестве X, если на X и _______.

2. Если функция f имеет первообразную на множестве X, то она единственна?

A) HeT

В) да

С) зависит от самой функции D) неопределенность

3. Выберите верные из следующих утверждений:

Пусть функции f,g имеют первообразные на множестве X. Тогда

- **A)** Совокупность всех первообразных функции f на множестве X исчерпывается множеством $\{F'(x)+C,\ C\in R\}$, где F- одна из первообразных f .
- **В)** $\forall \alpha \in \varphi$ функция $\alpha \cdot f$ также имеет первообразную на X и $\int \alpha f(x) dx = \alpha \int f(x) dx$
- C) функция $f\pm \varphi$ также имеет первообразную на X и $\int (f(x)\pm \varphi(x))dx = \int f(x)dx \pm \int \varphi(x)dx$
- **D**) функция $f \cdot \varphi$ также имеет первообразную на X и $[(f(x) \cdot \varphi(x))dx = [f(x)dx \cdot [\varphi(x))dx]]$

4. Выберите правильный ответ.

Формула интегрирования по частям в неопределенном интеграле имеет вид:

- **A)** $\int (f(x) \pm \varphi(x)) dx = \int f(x) dx \pm \int \varphi(x) dx$
- **B**) $\int \alpha f(x) dx = \alpha \int f(x) dx$
- **C**) $\int u dv = uv \int v du$
- **D**) $\int u dv = \int uv \int v du$
- **5.** Пусть F-одна из первообразных f на отрезке [a;b]. Тогда справедлива формула Ньютона-Лейбница для вычисления определенного интеграла от функции f на [a;b]: $\int_{a}^{b} f(x) dx = \underline{}$
 - **6.** Выберите первообразные для функции $f(x) = \frac{1}{\cos^2 x}$.

$$\mathbf{A)} - \frac{1}{\sin^2 x}$$

$$\mathbf{B}) - (\cos x)^{-1}$$

C)
$$tgx + 5$$

D)
$$-3 - (-tgx)$$

7. Найти неопределённый интеграл $\int e^x \sqrt{1 - e^x} dx$.

A)
$$-\frac{2}{3}\sqrt{(1-e^x)^3} + C$$

B)
$$e^x \cdot \frac{2}{3} \sqrt{(1-e^x)^3} + C$$

C)
$$-\frac{2}{3}\sqrt{(1-e^x)^3}$$

D)
$$e^x \cdot \sqrt{1 - e^x} + \frac{e^x}{\sqrt{1 - e^x}} + C$$

- **8.** Выберите правильный ответ $\int (x-3)e^{3x}dx$
- **A)** $e^{3x} + 3e^{3x}(x-3)$

B)
$$(x^2 - 3x)e^{3x}$$

C)
$$(x-3)e^{3x} - e^{3x} + C$$

D)
$$\frac{1}{3}(x-3)e^{3x} - \frac{1}{9}e^{3x} + C$$

9. Выберите правильный ответ $\int \ln^2 x dx$

$$\mathbf{A)} \ \frac{2\ln x}{x} + C$$

$$\mathbf{B)} \quad x \ln^2 x - 2x \ln x + 2x + C$$

C)
$$\left(\frac{1}{x}\right)^2 + C$$
 D) $2/x + C$

10. Найти неопределённый интеграл
$$\int \frac{dx}{x^2 + 4x + 6}$$

$$\mathbf{A)} \quad \frac{1}{\sqrt{2}} \ln \left| \frac{x-2}{x+2} \right| + C$$

B)
$$\frac{1}{\sqrt{2}} arctg \frac{x+2}{\sqrt{2}} + C$$

C)
$$\arcsin \frac{x+2}{\sqrt{2}} + C$$

D)
$$-\frac{1}{x+2}$$

	Тест №3									
N₂	1	2	3	4	5	6	7	8	9	10
задания										
Ответ	дифференцируема;	A	В,С	С	F(b)-F(a)	C,D	A	D	В	В
	$F'(x) = f(x), \forall x \in X$									
	•									

3.4 Рубежный контроль

Рубежный контроль ставит целью оценить уровень освоения обучающимися изученных разделов, a также знаний умений, предусмотренных компетенциями. Рубежный контроль проводится письменной форме на бумажных носителях в течение 90 минут.

В качестве оценочных фондов для тестирования используются тесты, приведённые в пункте 3.3 "Тестовые задания", варианты контрольных работ приведены в пункте 3.2 "Контрольные работы". По каждой теме разработано 3 варианта (приведён 1 вариант). Преподаватель вправе дополнить перечень указанных контрольных работ и тестов.

Каждый обучающийся получает бланк с индивидуальным материалом и письменно готовит ответы на поставленные задания. По результатам, преподавателем в журнале учёта занятий каждому обучающемуся выставляется оценка по пятибалльной шкале.

Результаты рубежного контроля учитываются при проведении промежуточной аттестации.

Вопросы рубежного контроля № 1

Вопросы, рассматриваемые на аудиторных занятиях

- 1. Понятие функции.
- 2. Графики элементарных функций.
- 3. Понятие предела функции.
- 4. Нахождение предела функции. Раскрытие неопределённостей.
- 5. Первый замечательный предел.
- 6. Второй замечательный предел.

Вопросы для самостоятельного изучения

- 1. Нахождение предела последовательности.
- 2. Бесконечно малые и бесконечно большие величины.
- 3. Свойства бесконечно малых и бесконечно больших величин.

- 4. Применение свойств бесконечно малых и бесконечно больших величин при нахождении пределов.
 - 5. Односторонние пределы.

Вопросы рубежного контроля № 2

Вопросы, рассматриваемые на аудиторных занятиях

- 1. Функции, непрерывные в точке и на отрезке. Точки разрыва и их классификация.
 - 2. Производная функции. Таблица производных.
 - 3. Производная сложной функции.
 - 4. Логарифмическая производная.
 - 5. Производная неявных и параметрически заданных функций.
 - 6. Производные высших порядков.
 - 7. Дифференциал функции.
 - 8. Дифференциалы высших порядков.
 - 9. Применение дифференциала функции в приближенных вычислениях.
 - 10. Интервалы монотонности функции.
 - 11. Нахождение точек экстремума функции.
 - 12. Асимптоты графика функции.
 - 13. Выпуклость и вогнутость графика функции, точки перегиба.

Вопросы для самостоятельного изучения

- 1. Непрерывность функции.
- 2. Применение производной при решении геометрических задач.
- 3. Применение производной в физике и механики.
- 4. Экономический смысл производной.
- 5. Приложение производной в экономической теории.

Вопросы рубежного контроля № 3

Вопросы, рассматриваемые на аудиторных занятиях

- 1. Первообразная функции и неопределенный интеграл.
- 2. Свойства неопределенного интеграла.
- 3. Интегралы от основных элементарных функций.
- 4. Метод замены переменной.
- 5. Метод интегрирования по частям.
- 6. Интегрирование простейших рациональных дробей.
- 7. Понятие определенного интеграла
- 8. Свойства определенного интеграла.
- 9. Формула Ньютона-Лейбница.
- 10. Замена переменной в определенном интеграле.
- 11. Формула интегрирования по частям для определенного интеграла.
- 12. Геометрические приложения определенного интеграла.
- 13. Несобственные интегралы.

Вопросы для самостоятельного изучения

- 1. Интегрирование некоторых иррациональностей.
- 2. Интегрирование тригонометрических функций.
- 3. Понятие о «не берущихся» интегралах

- 4. Механические приложения определенного интеграла.
- 5. Приближенное вычисление определенных интегралов. Формула прямоугольников. Формула трапеций. Формула Симпсона.
 - 6. Использование понятия определенного интеграла в экономике.

3.5 Промежуточная аттестация

Контроль за освоением дисциплины «Математика» и оценивание знаний, обучающихся производится в соответствии с учебным планом по направлению подготовки **35.03.04 Агрономия**. Видом промежуточной аттестации является в первом семестре — экзамен.

Целью проведения промежуточной аттестации — экзамена, является комплексная и объективная оценка качества усвоения обучающимися теоретических знаний, умения систематизировать полученные знания и применять их к решению практических задач, уровня сформированности компетенций при освоении дисциплины «Математика».

Экзаменационный билет содержит один теоретический вопрос и одно практическое задание.

Приводится пример одного из вариантов экзаменационного билета по соответствующему разделу курса.

Вопросы, выносимые на экзамен

- 1. Предел функции.
- 2. Бесконечно малые и бесконечно большие функции. Их свойства. Связь между бесконечно малыми и бесконечно большими функциями.
 - 3. Теоремы о пределах.
 - 4. Раскрытие неопределённостей при вычислении пределов.
 - 5. Первый и второй замечательные пределы.
- 6. Непрерывность функции в точке и на интервале. Точки разрыва первого и второго рода.
- 7. Приращение аргумента и приращение функции. Понятие производной. Механический и геометрический смысл производной.
 - 8. Связь дифференцирования и непрерывности функции.
 - 9. Основные теоремы дифференцирования.
 - 10. Таблица производных.
- 11. Логарифмическая производная. Производная неявно заданной функции
 - 12. Производные высших порядков.
 - 13. Дифференциал функции.
 - 14. Возрастание и убывание функции.
- 15. Максимум и минимум функции. Необходимое и достаточное условия существования экстремума.
- 16. Выпуклость и вогнутость графика функции. Точки перегиба. Необходимые и достаточные условия существования точки перегиба.
 - 17. Асимптоты: вертикальные, горизонтальные и наклонные.
 - 18. Схема полного исследования графика функции.
 - 19. Первообразная и неопределенный интеграл.

- 20. Свойства неопределенного интеграла и методы его вычисления.
- 21. Определенный интеграл. Свойства и методы вычисления.

МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего образования

«Саратовский государственный аграрный университет им. Н.И. Вавилова» Кафедра «Математика, механика и инженерная графика» ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 1

Дисциплина Математика

1. Правила Лопиталя.

2. Найти $\lim_{x\to 0} \frac{1-\cos x}{x^2}$

Дата

Зав. кафедрой ММиИГ

Г.Н. Камышова

4. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций 1 Процедуры оценивания знаний, умений, навыков и (или) опыта

4.1 Процедуры оценивания знаний, умений, навыков и (или) опыта деятельности

Контроль результатов обучения обучающихся, этапов и уровня формирования компетенций по дисциплине «Математика» осуществляется через проведение входного, текущего, рубежных, выходного контролей и контроля самостоятельной работы

Формы текущего, промежуточного и итогового контроля, порядок начисления баллов и фонды контрольных заданий для текущего контроля разрабатываются кафедрой исходя из специфики дисциплины, и утверждаются на заседании кафедры.

4.2 Критерии оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы

Описание шкалы оценивания достижения компетенций по дисциплине приведено в таблице 5.

Таблица 5

Уровень	Отметка і	ю пятибалльн	ой системе	Описание
освоения	(проме	жуточная атто	естация)	
компетенци				
И				
высокий	"отлично"	"зачтено"	"зачтено" (отлично)	Обучающийся обнаружил всестороннее, систематическое и глубокое знание учебного материала, умеет свободно выполнять задания, предусмотренные программой, усвоил основную

базовый	"хорошо"	"зачтено"	"зачтено" (хорошо)	литературу и знаком с дополнительной литературой, рекомендованной программой. Как правило, обучающийся проявляет творческие способности в понимании, изложении и использовании материала Обучающийся обнаружил полное знание учебного материала, успешно выполняет предусмотренные в программе задания, усвоил основную литературу, рекомендованную в программе
пороговый	"удовлетвор ительно"	"зачтено"	"зачтено" (удовлетвори тельно)	Обучающийся обнаружил знания основного учебного материала в объеме, необходимом для дальнейшей учебы и пред стоящей работы по профессии, справляется с выполнением практических заданий, предусмотренных программой, знаком с основной литературой, рекомендованной программой, допустил погрешности в ответе на экзамене и при выполнении экзаменационных заданий, но обладает необходимыми знаниями для их устранения под руководством преподавателя
Ниже порогового	"не удовлетвори тельно"	"не зачтено"	"не зачтено" (не удовлетворит ельно)	Обучающийся обнаружил пробелы в знаниях основного учебного материала, допустил принципиальные ошибки в выполнении предусмотренных программой практических заданий, не может продолжить обучение или приступить к профессиональной деятельности по окончании образовательной организации без дополнительных занятий

4.2.1. Критерии оценки устного ответа при текущем контроле и промежуточной аттестации

При ответе на вопрос обучающийся демонстрирует:

знание: основных понятий математического анализа; классических методов математического анализа необходимых и достаточных для обработки результатов опытов, формулирования выводов.

умение: проводить математические вычисления по заданным алгоритмам; исследовать и разрабатывать математические модели, методы и алгоритмы для обработки результатов опытов, формулирования выводов.

владение: навыками применения современного математического инструментария для решения конкретных задач; методами построения, анализа и применения математических моделей для оценки результатов опытов, формулированию выводов.

Критерии оценки

обучающийся демонстрирует: отлично знание основных понятий математического анализа; классических метолов математического анализа необходимых и достаточных для обработки результатов опытов, формулирования выводов, идеально использует практику применения материала, исчерпывающе и последовательно, чётко и логично излагает материал, хорошо ориентируется в материале, не затрудняется с ответом при видоизменении заданий; умение проводить математические вычисления по заданным алгоритмам; исследовать и разрабатывать математические модели, обработки результатов алгоритмы ДЛЯ опытов, современные формулирования выводов, используя методы показатели такой оценки; успешное и системное владение навыками применения современного инструментария математического ДЛЯ решения конкретных задач; методами построения, анализа и применения математических моделей ДЛЯ оценки результатов опытов, формулированию выводов, предусмотренных программой курса. обучающийся демонстрирует: хорошо знание материала основных понятий математического анализа; классических методов математического анализа необходимых и достаточных для обработки результатов опытов, формулирования выводов, не допускает существенных неточностей; в целом успешное, но содержащие отдельные пробелы, умение проводить математические вычисления по заданным алгоритмам; исследовать и разрабатывать математические модели, методы и алгоритмы для обработки результатов опытов, формулирования выводов, используя современные методы и показатели такой оценки; в целом успешное, но содержащее отдельные пробелы или сопровождающееся отдельными ошибками владение навыками применения современного математического инструментария для решения конкретных задач; методами построения, анализа и применения математических моделей для оценки результатов опытов, формулированию выводов, предусмотренных программой курса. обучающийся демонстрирует: удовлетворитель основного но знания только материала основных понятий математического анализа; классических методов математического анализа необходимых и достаточных для обработки результатов опытов, но не знает деталей, допускает неточности в формулировках, нарушает логическую последовательность в изложении программного материала; в целом успешное, но не системное умение проводить математические вычисления по заданным алгоритмам; исследовать и разрабатывать математические модели, методы и алгоритмы для обработки результатов опытов, формулирования выводов, используя современные методы и показатели оценки (указываются конкретные методы и показатели оценки; в целом успешное, но не системное владение навыками

применения современного математического инструментария для решения конкретных задач; методами построения, анализа и применения математических моделей для оценки результатов опытов,

неудовлетворите льно

формулированию выводов, предусмотренных программой курса.

обучающийся:

- не знает значительной части программного материала, плохо ориентируется в материале: основные понятия математического анализа; классических методов математического анализа необходимых и достаточных для обработки результатов опытов, формулирования выводов, не знает практику применения материала, допускает существенные ошибки;
- не умеет проводить математические вычисления по заданным алгоритмам; исследовать и разрабатывать математические модели, методы алгоритмы для обработки результатов опытов, формулирования допускает существенные ошибки. выводов, неуверенно, с большими затруднениями выполняет самостоятельную большинство заданий, предусмотренных программой дисциплины, не выполнено;
- обучающийся не владеет навыками применения современного математического инструментария для решения конкретных задач; методами построения, анализа и применения математических моделей для оценки результатов опытов, формулированию выводов, допускает существенные ошибки, с большими затруднениями выполняет самостоятельную работу, большинство предусмотренных программой дисциплины не выполнено.

4.2.2. Критерии оценки выполнения контрольных работ

При выполнении контрольных работ обучающийся демонстрирует:

знание: основных понятий математического анализа; классических методов математического анализа необходимых и достаточных для обработки результатов опытов, формулирования выводов.

умение: проводить математические вычисления по заданным алгоритмам; исследовать и разрабатывать математические модели, методы и алгоритмы для обработки результатов опытов, формулирования выводов.

владение: навыками применения современного математического инструментария для решения конкретных задач; методами построения, анализа и применения математических моделей для оценки результатов опытов, формулированию выводов.

Критерии оценки выполнения контрольных работ

отлично

обучающийся демонстрирует:

- -высокий результат знаний основных понятий математического анализа; классических методов математического анализа необходимых и достаточных для обработки результатов опытов, формулирования выводов, отвечает правильно и в развёрнутом виде на все теоретические (практические) вопросы;
- -отлично сформированные умения проводить математические вычисления по заданным алгоритмам; исследовать и разрабатывать математические модели, методы и алгоритмы для обработки результатов опытов, формулирования выводов, с необходимыми пояснениями;
- -систематизированное владение навыками применения современного математического инструментария для решения конкретных задач; методами построения, анализа и применения математических моделей для оценки результатов опытов, формулированию выводов, не допускает ошибок в ответе.

хорошо

обучающийся демонстрирует:

- -хороший результат знаний основных понятий математического анализа; классических методов математического анализа необходимых и достаточных для обработки результатов опытов, формулирования выводов, отвечает правильно и в развёрнутом виде на все теоретические (практические) вопросы, но в краткой форме;
- -хорошо сформированные умения проводить математические вычисления по заданным алгоритмам; исследовать и разрабатывать математические модели, методы и алгоритмы для обработки результатов опытов, формулирования выводов, с недостаточно полными пояснениями;
- -систематизированное владение навыками применения современного математического инструментария для решения конкретных задач; методами построения, анализа и применения математических моделей для оценки результатов опытов, формулированию выводов, допускает одну ошибку в ответе.

удовлетворите льно

обучающийся демонстрирует:

- -удовлетворительный результат знаний основных понятий математического анализа; классических методов математического анализа необходимых и достаточных для обработки результатов опытов, формулирования выводов, правильно отвечает только на часть поставленных теоретических (практических) вопросов;
- -удовлетворительно сформированные умения проводить математические вычисления по заданным алгоритмам; исследовать и разрабатывать математические модели, методы и алгоритмы для обработки результатов опытов, формулирования выводов, с существенными ошибками в пояснениях;
- -систематизированное владение навыками применения современного математического инструментария для решения конкретных задач; методами построения, анализа и применения математических моделей для оценки результатов опытов, формулированию выводов, допускает более одной ошибки в ответе.

неудовлетвор ительно

обучающийся демонстрирует:

- -неудовлетворительный результат знаний основных понятий математического анализа; классических методов математического анализа необходимых и достаточных для обработки результатов опытов, формулирования выводов, не дает ответов на теоретические (практических) вопросы;
- -неудовлетворительно сформированные умения проводить математические вычисления по заданным алгоритмам; исследовать и разрабатывать математические модели, методы и алгоритмы для обработки результатов опытов, формулирования выводов, с большим количеством существенных ошибок в пояснениях;
- -систематизированное владение навыками применения современного математического инструментария для решения конкретных задач; методами построения, анализа и применения математических моделей для оценки результатов опытов, формулированию выводов, полностью отсутствуют.

20

4.2.3. Критерии оценки выполнения тестовых заданий

При выполнении тестовых заданий обучающийся демонстрирует:

знание: основных понятий математического анализа; классических методов математического анализа необходимых и достаточных для обработки результатов опытов, формулирования выводов.

умение: проводить математические вычисления по заданным алгоритмам; исследовать и разрабатывать математические модели, методы и алгоритмы для обработки результатов опытов, формулирования выводов.

владение: навыками применения современного математического инструментария для решения конкретных задач; методами построения, анализа и применения математических моделей для оценки результатов опытов, формулированию выводов.

Критерии оценки выполнения тестовых заданий

притерии оценки выполнения тестовых задании	1		
отлично обучающийся демонстрирует:			
-отличные знания основных понятий математического			
классических методов математического анализа необхо	димых и		
достаточных для обработки результатов опытов, форму	лирования		
выводов			
-умения проводить математические вычисления по зада	анным		
алгоритмам; исследовать и разрабатывать математичес	алгоритмам; исследовать и разрабатывать математические модели,		
методы и алгоритмы для обработки результатов опыто	методы и алгоритмы для обработки результатов опытов,		
формулирования выводов	формулирования выводов		
-владение навыками применения современного матема	-владение навыками применения современного математического		
инструментария для решения конкретных задач; метод	инструментария для решения конкретных задач; методами		
построения, анализа и применения математических мод	построения, анализа и применения математических моделей для		
оценки результатов опытов, формулированию выводов	и отвечает		
на тестовые задания в пределах 86%-100%.			
хорошо обучающийся демонстрирует:	обучающийся демонстрирует:		
-хорошие знания основных понятий математического а	анализа;		
классических методов математического анализа необхо	димых и		
достаточных для обработки результатов опытов, форму	достаточных для обработки результатов опытов, формулирования		
выводов			
-умения проводить математические вычисления по зада	-умения проводить математические вычисления по заданным		
алгоритмам; исследовать и разрабатывать математичес	алгоритмам; исследовать и разрабатывать математические модели,		
методы и алгоритмы для обработки результатов опыто	методы и алгоритмы для обработки результатов опытов,		
формулирования выводов			
-владение навыками применения современного мат	-владение навыками применения современного математического		
инструментария для решения конкретных задач	н; методами		
построения, анализа и применения математических	моделей для		
оценки результатов опытов, формулированию выводо			
на тестовые задания в пределах 74%-85%.			
удовлетворитель обучающийся демонстрирует:			
но -удовлетворительные знания основных понятий матема	тического		
анализа; классических методов математического анализ	за		
необходимых и достаточных для обработки результатов	в опытов,		
формулирования выводов			
-умения проводить математические вычисления по зада	анным		
алгоритмам; исследовать и разрабатывать математичес	кие модели,		
методы и алгоритмы для обработки результатов опыто			
формулирования выводов			

	-владение навыками применения современного математического				
	инструментария для решения конкретных задач; методами				
	построения, анализа и применения математических моделей для				
	оценки результатов опытов, формулированию выводов и отвечает				
	на тестовые задания в пределах 60%-73%.				
неудовлетворите	обучающийся демонстрирует:				
льно	-неудовлетворительные знания основных понятий математического				
	анализа; классических методов математического анализа				
	необходимых и достаточных для обработки результатов опытов,				
	формулирования выводов				
	-умения проводить математические вычисления по заданным				
	алгоритмам; исследовать и разрабатывать математические модели,				
	методы и алгоритмы для обработки результатов опытов,				
	формулирования выводов				
	-владение навыками применения современного математического				
	инструментария для решения конкретных задач; методами				
	построения, анализа и применения математических моделей для				
	оценки результатов опытов, формулированию выводов и отвечает				
	на тестовые задания в пределах тестовых заданий ниже 60%.				

smept

Разработчик(и): доцент, Терехова Н. Н.