Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Соловьев Дмитрий Александрович

Должность ректор ФГБОУ ВО ВЗЕИЛЛЯ СТВО СЕЛЬСКОГО ХОЗЯЙСТВА РОССИЙСКОЙ Дата подписания: 02.10.2024 09:11:56

Уникальный программный ключ:
528682d7 e671e566 20 7 10 10 22 172 173 52 12

2172f735a12 Фелеральное государственное бюджетное образовательное учреждение высшего образования «Саратовский государственный аграрный университет

имени Н.И. Вавилова»

УТВЕРЖДАЮ Заведующий кафедрой /Трушкин В.А./ 2019 г.

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ

Дисциплина

Физика

Направление подготовки

35.03.10 Ландшафтная архитектура

Направленность

(профиль)

Садово-парковое строительство и дизайн

Квалификация

выпускника

Бакалавр

Нормативный срок

Обучения

4 года

Форма обучения

Заочная

Кафедра-разработчик

Инженерная физика, электрооборудование

и электротехнологии

Ведущий преподаватель

Кочелаевская К.В., доцент

Разработчик: доцент, Кочелаевская К.В.

Саратов 2019

Содержание

1	Перечень компетенций с указанием этапов их формирования в процесс
	освоения ОПОП
2	Описание показателей и критериев оценивания компетенций на различны
	этапах их формирования, описание шкал оценивания 4
3	Типовые контрольные задания или иные материалы, необходимые дл
	оценки знаний, умений, навыков и (или) опыта деятельности
	характеризующих этапы формирования компетенций в процессе освоени
	образовательной программы
4	Методические материалы, определяющие процедуры оценивания знаний
	умений, навыков и (или) опыта деятельности, характеризующих этапы и
	формирования

1. Перечень компетенций с указанием этапов их формирования в процессе освоения ОПОП

В результате изучения дисциплины «Физика» обучающиеся, в соответствии с $\Phi\Gamma$ OC BO по направлению подготовки 35.03.10 Ландшафтная архитектура , утвержденного приказом Министерства образования и науки РФ от 31.05.2017 г. N 481, формируют следующие компетенции:

Формирование компетенций в процессе изучения дисциплины «Физика»

Таблина 1

Taox					
К	омпетенция	Индикаторы	Этапы	Виды занятий	Оценочные
Код	Наименование	достижения	формировани	для	средства для
		компетенций	Я	формирования	оценки уровня
			компетенции	компетенции	сформированности
			в процессе		компетенции
			освоения		
			ОПОП (курс) [*]		
1	2	3	4	5	6
УК-1	Способен	УК-1.6 знает	2	лекции/практи	контрольная
	осуществлять	принципы		ческие занятие	работа,
	поиск,	системного			ситуационная
	критический	подхода для			задача
	анализ и синтез	решения задач в			зиди ти
	информации,	области физики			
	применять	ооласти физики			
	системный				
	подход для				
	решения				
	поставленных				
	задач				
ОПК-	Способен	ОПК-1.7	2	лекции/практи	контрольная
1	решать	использует		ческие занятие	работа/
	типовые	знания законов			ситуационная
	задачи	физики для			задача
	профессиональ	решения задач в			
	ной	профессиональн			
	деятельности	ой деятельности			
	на основе				
	знаний				
	основных				
	законов				
	математическ				
	ux u				
	естественных				
	наук с				
	применением				
	информационн				
	информиционн				
	коммуникацио				
	<i>ННЫХ</i>				
	технологий				
t				1	

ОПК-	Способен	ОПК-5.4.	2	лекции/практи	контрольная
5	участвовать в	способен		ческие занятие	работа/
	проведении	провести			ситуационная
	эксперимента	эксперимент по			задача
	льных	общепринятой			
	исследований в	методике			
	профессиональ	использование			
	ной	средств и			
	деятельности	методов работы			
		c			
		библиографичес			
		кими,			
		архивными			
		источниками			

Примечание:

Компетенция УК-1 — также формируется в ходе освоения дисциплин: философия, история архитектуры, математика базовый уровень, почвоведение, экология, основы научных исследований в ландшафтной архитектуре, производственная практика: научно-исследовательская работа, Государственная итоговая аттестация, Защита выпускной квалификационной работы, включая подготовку к процедуре защиты и процедуру защиты...

Компетенция ОПК-1 – также формируется в ходе освоения дисциплин: геодезия, ландшафтоведение, ботаника, информатика, математика базовый уровень, информатика, экология, цифровые технологии в ландшафтной архитектуре, производственная практика: научно-исследовательская работа, проектно-технологическая практика, Государственная итоговая аттестация, Защита выпускной квалификационной работы, включая подготовку к процедуре защиты и процедуру защиты.

Компетенция ОПК-5 — также формируется в ходе освоения дисциплин: химия, почвоведение, основы научных исследований в ландшафтной архитектуре, производственная практика: научно-исследовательская работа, Государственная итоговая аттестация, Защита выпускной квалификационной работы, включая подготовку к процедуре защиты и процедуру защиты.

2. Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

Перечень оценочных материалов

Таблица 2

$N_{\underline{0}}$	Наименование	Краткая характеристика	Представление оценочного
Π/Π	оценочного	оценочного материала	средства в ОМ
	материала		
1	Практическое	занятие, на котором	ситуационная задача
	занятие	проверяется умение применять	
		полученные знания для	
		решения задач определенного	
		типа по разделу или	
		нескольким разделам	
2	собеседование	средство контроля,	вопросы по темам
		организованное как	дисциплины:
		специальная беседа	- перечень вопросов для
		педагогического работника с	устного опроса

		обучающимся на темы, связанные с изучаемой дисциплиной и рассчитанной на выяснение объема знаний обучающегося по	задания для самостоятельной работы
		определенному разделу, теме,	
2		проблеме и т.п.	
3	контрольная работа	средство проверки умений	комплект контрольных
		применять полученные знания	заданий по вариантам
		для решения задач	
		определенного типа по разделу	
		или нескольким разделам	

Программа оценивания контролируемой дисциплины

Таблица 3

№ п/п	Контролируемые разделы (темы дисциплины)	Код контролируемой компетенции (или ее части)	Наименование оценочного материала
1	2	3	4
2	Механика		Ситуационные задачи
3	Молекулярная физика		Контрольная работа
4	Основы молекулярно- кинетической теории строения вещества.	УК-1 ОПК-1	ситуационные задачи, контрольная работа
5	Электростатика.	ОПК-5	Контрольная работа
7	Электричество и магнетизм		ситуационная задача
8	Магнитное поле		ситуационные задачи, контрольная работа

Описание показателей и критериев оценивания компетенций по дисциплине «Физика» на различных этапах их формирования, описание шкал оценивания

Таблица 4

Код	Индикаторы	Показатели и критерии оценивания результатов обучения			
компетенци	достижения	ниже	пороговый	продвинутый	высокий
и, этапы	компетенций	порогового	уровень	уровень	уровень
освоения		уровня	(удовлетвори	(хорошо)	(отлично)
компетенци		(неудовлетвори	тельно)		
И		тельно)			
1	2	3	4	5	6
УК-1,	УК-1.6	не владеет	достаточно	хорошо	быстро и
2 курс	знает	принципами	неплохо, но	решает	качественно
	принципы	системного	долго	задачи по	систематизир
	системного	подхода	систематизир	физике, но	ует
	подхода для		ует	без	поставленну
	решения		информацию	применения	ю задачи
	задач в			системного	
	области			подхода	
	физики				

OTIL 1	OHK 1.7	- E		T	
ОПК-1,	ОПК-1.7	обучающийся	удовлетворит	достаточно	отлично
2 курс	использует	не знает	ельно знает	хорошо	знает
	знания	значительной	основные	владеет	современную
	законов	части	законы,	основными	физическую
	физики для	материала,	понятия,	законами	картину
	решения	плохо	формулы из	физики,	мира,
	задач в	ориентируется в	различных	может	взаимосвязь
	профессионал	теории, не знает	разделов	вывести	между
	ьной	практику	курса	формулы из	физическими
	деятельности	применения	физики.	различных	явлениями
		материала,		разделов	ИЗ
		допускает		курса	различных
		ошибки в		физики.	областей
		описании			физики.
		процессов и			
		явлений.			
ОПК-5,	ОПК-5.4	не умеет	плохо	неплохо	отлично
2 курс	способен	пользоваться	владеет	ориентирует	ориентирует
Jr -	провести	библиографичес	методами	ся в методах	ся в тематике
	эксперимент	КИМИ	работы с	работы с	архивных
	по	справочниками	архивными	библиографи	данных,
	общепринято	- F	источниками	ческими	быстро
	й методике			источниками	находит
	использовани				необходимы
	е средств и				е материалы
	методов				C Marephanbi
	работы с				
	библиографи				
	ческими,				
	архивными				
	источниками				
	источниками				

3. Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы

3.1. Контрольная работа

Тематика контрольных и самостоятельных работ устанавливается в точном соответствии с ФГОС ВО и рабочей программой по данному направлению полготовки.

Количество вариантов заданий соответствует количеству обучающихся в учебной группе.

Пример контрольной работы:

Билет 1

- 1. Ускорение: определение, единицы размерности, формулы для определения, определение направления.
- **2.** Радиус вектор точки изменяется по закону $r = 2t^3\bar{i} + 4t\bar{j} + 3\bar{k}$. Найти скорость $\bar{\nu}$ точки.

- 3. Тело движется по криволинейной траектории по часовой стрелке с увеличением скорости. Изобразить это движение и вектор тангенциального ускорения.
- 4. Что включает в себя система отчета?
- **5**. Решают две задачи:
 - А) рассчитывают время движения поезда между двумя станциями,
 - Б) рассчитывают время движения поезда вдоль железнодорожной платформы.

При решении какой задачи поезд можно принять за материальную точку?

- 1. и А, и Б
- 2. A
- 3. Б
- 4. ни А, ни Б
- 6. Если радиус окружности уменьшится в 4 раза при неизменной линейной скорости, то угловая скорость при вращении тела по окружности
- 1. останется прежней
- 2. увеличится в 4 раза
- 3. уменьшится в 4 раза
- 4. уменьшится в 16 раз
- 7. Единицы измерения угловой скорости.
- **8.** Автомобиль, трогаясь с места, движется прямолинейно с постоянным ускорением, равным по модулю 1 м/c^2 . Через какое время он приобретет скорость 72 км/ч?
- 1.72 c
- 2.60 c
- 3.40 c
- 4. 20 c
- 5. 10 c

3.2. Текущий контроль

Текущий контроль по дисциплине «Физика» позволяет оценить степень восприятия учебного материала и проводится для оценки результатов изучения разделов/тем дисциплины.

Текущий контроль проводится в виде:

- рубежного контроля: по итогам изучения раздела или нескольких разделов дисциплины. Рубежный контроль проводится в форме тестовой работы.

Вопросы, рассматриваемые на аудиторных занятиях

- 1. Материальная точка. Система отсчета.
- 2. Скорость средняя и мгновенная.
- 3. Путь при произвольной зависимости от времени.
- 4. Ускорение. Скорость и путь при равноускоренном движении.
- 5. Ускорение при движении тела с постоянной скоростью по окружности.
- 6. Угловая скорость. Направление вектора угловой скорости.
- 7. Период и частота вращения. Связь с угловой скоростью.
- 8. Угловое ускорение; связь с тангенциальным ускорением.
- 9. Первый закон Ньютона. Инерциальные и неинерциальные системы отсчета.
- 10. Второй закон Ньютона. Сила. Масса тела.
- 11. Третий закон Ньютона. Направление сил, действующих на тела.
- 12.Импульс тела. Выражение второго закона Ньютона через импульс.
- 13.Сила тяжести и вес тела.
- 14.Сила трения. Сила упругости.
- 15. Закон сохранения импульса в замкнутой системе.

- 16.Полная механическая энергия. Закон сохранения и превращения энергии.
- 17. Абсолютно упругий и неупругий удар шаров.
- 19. Основные положения молекулярно-кинетической теории.
- 20.Основные понятия термодинамики.
- 21. Уравнение состояния тела (вещества).
- 22.Идеальный газ. Какой газ близок к идеальному?
- 23. Уравнение состояния идеального газа для данной массы газа (уравнение Менделеева Клапейрона).
- 24. Уравнение состояния идеального газа в виде зависимости давления от температуры и концентрации молекул.
- 25. Основное уравнение молекулярно кинетической теории газов.
- 26. Внутренняя энергия термодинамической системы.
- 27. Число степеней свободы молекул.
- 28. Связь внутренней энергии вещества с числом степеней свободы.
- 29. Первое начало термодинамики.
- 30. Работа, совершаемая газом при изменении его объёма.
- 31. Теплоёмкость тела, молярная и удельная теплоёмкости.
- 32. Работа, совершаемая идеальным газом при различных процессах (изохорическом, изобарическом, изотермическом, адиабатическом).
- 33. Коэффициент полезного действия для кругового процесса.
- 34. Две формы передачи энергии от одних тел другим.
- 35. Закон Кулона. Направление силы, действующей на заряд.
- 36. Напряженность электрического поля.
- 37. Принцип суперпозиции электрических полей.
- 38. Силовые линии (линии напряженности) электрического поля. Полное число линий, входящих из точечного заряда.
- 39. Работа сил электрического поля по перемещению точечного заряда.
- 40. Потенциальная энергия точечного заряда в поле другого точечного заряда. Потенциал. Работа по перемещению заряда между точками с разными потенциалами.
- 41. Связь между напряженностью электрического поля и потенциалом.
- 42. Электроемкость уединенного проводника. Емкость шара.
- 43. Конденсаторы. Емкость плоского конденсатора. Емкость при последовательном и параллельном соединениях конденсаторов.
- 44. Энергия заряженного конденсатора.
- 45. Сила тока. Сила тока в случае движения положительных и отрицательных зарядов. Вектор плотности тока, связь с силой тока.
- 46. Закон Ома для участка цепи. Сопротивление цилиндрического проводника. Зависимость удельного сопротивления от температуры.
- 47. Сопротивление при последовательном и параллельном соединении проводников.
- 48. Электродвижущая сила. Падение напряжения на неоднородном участке цепи. Закон Ома
- 49. Работа и мощность тока. Закон Джоуля-Ленца.
- 50. Мощность, развиваемая источником тока. Мощность, выделяемая в нагрузке. Коэффициент полезного действия источника тока.

- 51. Магнитное поле. Магнитная индукция, принцип суперпозиции магнитных полей. Силовые линии магнитного поля. Закон Био Савара Лапласа.
- 52. Магнитная индукция прямого проводника с током.
- 53. Сила Лоренца. Направление силы, действующей на положительный и отрицательный заряды.
- 54. Закон Ампера. Физический смысл вектора магнитной индукции В.
- 55. Сила взаимодействия двух бесконечных прямых проводников с током. Правило левой руки.
- 56. Магнитный поток.
- 57. Работа, совершаемая при перемещении проводника с током в магнитном поле. Работа при повороте контура в магнитном поле на угол.
- 58. Поток вектора магнитной индукции через замкнутую поверхность.
- 59. Электромагнитная индукция. Индукционный ток. Правило Ленца.
- 60. Самоиндукция. Индуктивность. Индуктивность соленоида.
- 61. ЭДС самоиндукции.
- 62. Энергия магнитного поля. Плотность энергии магнитного поля.

Вопросы для самостоятельного изучения

- 1. Связь между линейными и угловыми величинами.
- 2. Аналогия между вращательным и поступательным движениями.
- 3. Вес тела при движении с ускорением. Невесомость.
- 4. Механическая система. Силы внутренние и внешние
- 5. Кинетическая энергия, вывод формулы через работу.
- 6. Работа и энергия. Мощность
- 7. Закон Дальтона.
- 8. Оценить объем и размер молекул воды.
- 9. Применение первого начала термодинамики к изопроцессам.
- 10.Виды электрических разрядов.
- 11. Проводник во внешнем электрическом поле. Индуцированные заряды.
- 12. Магнитная индукция внутри магнетика.
- 13.Плотность потока энергии в электромагнитной волне.
- 14. Виды конденсаторов и их применение.
- 15. Магнетики и их применение.

3.3.Промежуточная аттестация

Вопросы, выносимые на экзамен

- 1. Материальная точка. Система отсчета.
- 2.Скорость средняя и мгновенная.
- 3.Путь при произвольной зависимости от времени.
- 4. Ускорение. Скорость и путь при равноускоренном движении.
- 5. Ускорение при движении тела с постоянной скоростью по окружности.
- 6. Угловая скорость. Направление вектора угловой скорости.
- 7. Период и частота вращения. Связь с угловой скоростью.

- 8. Угловое ускорение; связь с тангенциальным ускорением.
- 9. Первый закон Ньютона. Инерциальные и неинерциальные системы отсчета.
- 10. Второй закон Ньютона. Сила. Масса тела.
- 11. Третий закон Ньютона. Направление сил, действующих на тела.
- 12. Импульс тела. Выражение второго закона Ньютона через импульс.
- 13.Сила тяжести и вес тела.
- 14. Сила трения. Сила упругости.
- 15. Закон сохранения импульса в замкнутой системе.
- 16.Полная механическая энергия. Закон сохранения и превращения энергии.
- 17. Абсолютно упругий и неупругий удар шаров.
- 19. Основные положения молекулярно-кинетической теории.
- 20. Основные понятия термодинамики.
- 21. Уравнение состояния тела (вещества).
- 22.Идеальный газ. Какой газ близок к идеальному?
- 23. Уравнение состояния идеального газа для данной массы газа (уравнение Менделеева Клапейрона).
- 24. Уравнение состояния идеального газа в виде зависимости давления от температуры и концентрации молекул.
- 25. Основное уравнение молекулярно кинетической теории газов.
- 26. Внутренняя энергия термодинамической системы.
- 27. Число степеней свободы молекул.
- 28. Связь внутренней энергии вещества с числом степеней свободы.
- 29. Первое начало термодинамики.
- 30. Работа, совершаемая газом при изменении его объёма.
- 31. Теплоёмкость тела, молярная и удельная теплоёмкости.
- 32. Работа, совершаемая идеальным газом при различных процессах (изохорическом, изобарическом, изотермическом, адиабатическом).
- 33. Коэффициент полезного действия для кругового процесса.
- 34. Две формы передачи энергии от одних тел другим.
- 35. Аналогия между вращательным и поступательным движениями.
- 36.Вес тела при движении с ускорением. Невесомость.
- 37. Механическая система. Силы внутренние и внешние
- 38.Кинетическая энергия, вывод формулы через работу.
- 39. Работа и энергия. Мощность
- 40. Закон Дальтона.
- 41. Оценить объем и размер молекул воды.
- 42. Применение первого начала термодинамики к изопроцессам.
- 43. Закон Кулона. Направление силы, действующей на заряд.
- 44. Напряженность электрического поля.
- 45. Принцип суперпозиции электрических полей.
- 46. Силовые линии (линии напряженности) электрического поля. Полное число линий, входящих из точечного заряда.
- 47. Работа сил электрического поля по перемещению точечного заряда.
- 48. Потенциальная энергия точечного заряда в поле другого точечного заряда.

Потенциал. Работа по перемещению заряда между точками с разными потенциалами.

- 49. Связь между напряженностью электрического поля и потенциалом.
- 50. Электроемкость уединенного проводника. Емкость шара.
- 51. Конденсаторы. Емкость плоского конденсатора. Емкость при последовательном и параллельном соединениях конденсаторов.
- 52. Энергия заряженного конденсатора.
- 53. Сила тока. Сила тока в случае движения положительных и отрицательных зарядов. Вектор плотности тока, связь с силой тока.
- 54. Закон Ома для участка цепи. Сопротивление цилиндрического проводника. Зависимость удельного сопротивления от температуры.
- 55. Сопротивление при последовательном и параллельном соединении проводников.
- 56. Электродвижущая сила. Падение напряжения на неоднородном участке цепи. Закон Ома
- 57. Работа и мощность тока. Закон Джоуля-Ленца.
- 58. Мощность, развиваемая источником тока. Мощность, выделяемая в нагрузке. Коэффициент полезного действия источника тока.
- 59. Магнитное поле. Магнитная индукция, принцип суперпозиции магнитных полей. Силовые линии магнитного поля. Закон Био Савара Лапласа.
- 60. Магнитная индукция прямого проводника с током.
- 61. Сила Лоренца. Направление силы, действующей на положительный и отрицательный заряды.
- 62. Закон Ампера. Физический смысл вектора магнитной индукции В.
- 63. Сила взаимодействия двух бесконечных прямых проводников с током. Правило левой руки.
- 64. Магнитный поток.
- 65. Работа, совершаемая при перемещении проводника с током в магнитном поле. Работа при повороте контура в магнитном поле на угол.
- 66. Поток вектора магнитной индукции через замкнутую поверхность.
- 67. Электромагнитная индукция. Индукционный ток. Правило Ленца.
- 68. Самоиндукция. Индуктивность. Индуктивность соленоида.
- 69. ЭДС самоиндукции.
- 70. Энергия магнитного поля. Плотность энергии магнитного поля. 1. Связь между линейными и угловыми величинами.
- 71. Виды электрических разрядов.
- 72. Проводник во внешнем электрическом поле. Индуцированные заряды.
- 73. Магнитная индукция внутри магнетика.
- 74.Плотность потока энергии в электромагнитной волне.
- 75. Виды конденсаторов и их применение.
- 76. Магнетики и их применение.

Образец экзаменационного билета.

МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего образования

«Саратовский государственный аграрный университет имени Н. И. Вавилова» Кафедра: Инженерная физика, электрооборудование и электротехнологии

Дисциплина: Физика. ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № <u>1</u>

- 1. Механическое движение тела. Поступательное движение тела. Материальная точка. Скорость и путь при равномерном движении. Перемещение.
- 2. Момент инерции материальной точки. Момент инерции твердого тела. Теорема Штейнера.
- 3. При изобарном расширении 20г водорода его объем увеличился в 2раза. Начальная температура газа 300К. Определите работу расширения газа, изменение внутренней энергии и количество теплоты, сообщенной этому газу.

Зав. кафедрой	 В.А. Трушкин
1 1	1 2

3.4. Ситуационные задачи

В экзаменационных билетах присутствуют ситуационные задачи, которые предназначены для выявления способности обучающихся решать жизненные проблемы с помощью предметных знаний, которые относятся к понятию методических Они представить ресурсов. позволяют предметные метапредметные результаты образования в комплексе умений и навыков, основанных на знаниях за счёт усвоения разных способов деятельности, методов Решение ситуационной информацией. задачи работы мобилизацию имеющиеся у обучающихся знаний и опыта, полученных в ходе обучения — то есть быть компетентным, что отражает идеологию введения новых образовательных стандартов (ФГОС). Ситуационные задачи рассматриваются на практических занятиях и затем вносятся в экзаменационный билет.

Пример ситуационной задачи:

Для устойчивого горения дугового фонаря необходимо иметь напряжение 60 В и ток 10 А. Для питания фонаря установлен генератор с напряжением 120 В. Определить величину добавочного сопротивления к дуговому фонарю, если сопротивление соединительных проводов равно 0,2 Ом.

4. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций

Контроль результатов обучения, этапов и уровня формирования компетенций по дисциплине «Физика» осуществляется через проведение текущего, выходного контролей и контроля самостоятельной работы.

Формы текущего, итогового контроля и контрольные задания для текущего контроля разрабатываются кафедрой исходя из специфики дисциплины, и утверждаются на заседании кафедры.

4.1 Критерии оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы

Описание шкалы оценивания достижения компетенций по дисциплине

Уровень освоения компетенци и	Отметка по пятибалльной системе (экзамен- 2 курс)			Описание
высокий	«отлично»	«зачтено»	«зачтено (отлично) »	Обучающийся обнаружил всестороннее, систематическое и глубокое знание учебного материала, умеет свободно выполнять задания, предусмотренные программой, усвоил основную литературу и знаком с дополнительной литературой, рекомендованной программой. Как правило, обучающийся проявляет творческие способности в понимании, изложении и использовании материала
базовый	«хорошо»	«зачтено»	«зачтено (хорошо) »	Обучающийся обнаружил полное знание учебного материала, успешно выполняет предусмотренные в программе задания, усвоил основную литературу, рекомендованную в программе
пороговый	«удовлетвори тельно»		«зачтено (удовлетв орительно)»	Обучающийся обнаружил знания основного учебного материала в объеме, необходимом для дальнейшей учебы и предстоящей работы по профессии, справляется с выполнением практических заданий, предусмотренных программой, знаком с основной литературой, рекомендованной программой, допустил погрешности в ответе на экзамене и при выполнении экзаменационных заданий, но обладает необходимыми знаниями для их устранения под руководством преподавателя
_	«неудов- летвори- тельно»	«не зачтено»	«не зачтено (неудовлет- ворительно) »	Обучающийся обнаружил пробелы в знаниях основного учебного материала,

4.2.1. Критерии оценки устного ответа при текущем контроле и промежуточной аттестации

При ответе на вопрос обучающийся демонстрирует:

знания: основных законов и явлений физики, физических соотношений, описывающих данные явления, знает практические примеры применения указанных явлений в технике и технологии.

умения: проводить физические эксперименты и последующий расчет параметров физических процессов с использованием современных методов и средств обработки экспериментальных результатов и расчета погрешностей.

владение навыками: проведения физического эксперимента и последующего расчета параметров физических процессов с использованием современных методов и средств обработки экспериментальных результатов и расчета погрешностей.

Критерии оценки устного ответа

OT THE O	обучающийся демонстрирует:
отлично	
	- знание материала, в т.ч. основных законов и явлений физики,
	практики применения этих законов, исчерпывающе и
	последовательно, четко и логично излагает материал, хорошо в нем
	ориентируется, не затрудняется с ответом при изменений условий
	задания.
	- умение проводить физические эксперименты и последующий
	расчет параметров физических процессов с использованием
	современных методов и средств обработки экспериментальных
	результатов и расчета погрешностей.
	успешное и системное владение навыками проведения физического
	эксперимента и последующего расчета параметров физических
	процессов с использованием современных методов и средств
	обработки экспериментальных результатов и расчета
	погрешностей.
хорошо	обучающийся демонстрирует:
хорошо	- знание материала, не допускает существенных неточностей;
	в целом успешное, но содержащее отдельные пробелы, умение
	проводить физические эксперименты и последующий расчет
	параметров физических процессов, а также обработку
	экспериментальных результатов и расчет погрешностей;
	в целом успешное, но содержащее отдельные ошибки владение
	навыками проведения физического эксперимента и последующего
	расчета параметров физических процессов с использованием
	современных методов и средств обработки экспериментальных
	результатов и расчета погрешностей.
удовлетворительно	обучающийся демонстрирует:
	- знание только основного материала, но не знает деталей, допускает
	неточности в формулировках основных физических законов и
	явлений, нарушает логическую последовательность в изложении
	программного материала;
	в целом успешное, но не системное умение проведения физических
	экспериментов и последующего расчета параметров физических
	процессов, а также обработку экспериментальных результатов и
	расчет погрешностей;
	- в целом успешное, но не системное владение навыками проведения
	физического эксперимента и последующего расчета параметров
	физических процессов с использованием современных методов и
	средств обработки экспериментальных результатов и расчета
	погрешностей.

неудовлетворительно	обучающийся:
	- не знает значительной части программного материала, плохо
	ориентируется в физических явлениях и законах, не знает практику
	их применения, допускает при этом существенные ошибки;
	- не умеет использовать методы и приемы физических
	исследований, допускает при этом существенные ошибки,
	неуверенно, с большими затруднениями выполняет
	самостоятельную работу, большинство заданий, предусмотренных
	программой, не выполнено;
	- обучающийся не владеет навыками постановки и проведения
	физических экспериментов и последующего расчета параметров
	физических процессов, допускает при этом существенные ошибки,
	не умеет рассчитывать погрешности полученных значений,
	большинство заданий, предусмотренных программой дисциплины,
	не выполнено.

4.2.3. Критерии оценки контрольной работы

При написании рубежного контроля обучающийся демонстрирует:

знания: того раздела дисциплины, в т.ч. физических законов и явлений, по которому проводится контроль;

умения: проводить расчеты с помощью формул, описывающих те или иные физические законы и явления;

владение навыками: проведения расчетов по формулам, описывающим те или иные физические законы и явления.

Критерии выполнения контрольной работы

отлично	обучающийся демонстрирует: - знание материала, в т.ч. основных законов и явлений физики, практики применения этих законов, не затрудняется при решении задач любой сложности.
хорошо	обучающийся демонстрирует: - знание материала, в т.ч. основных законов и явлений физики, практики применения этих законов, но затрудняется при решении задач повышенной сложности.
удовлетворительно	обучающийся демонстрирует: - знание только основного материала, но не знает деталей, допускает неточности в записи физических законов и явлений, делает ошибки в расчетах
неудовлетворительно	обучающийся: - не знает значительной части программного материала, плохо ориентируется в физических явлениях и законах, допускает при существенные ошибки при решении задач

4.2.4. Критерии оценки решения ситуационной задачи

При решении ситуационной задачи обучающийся демонстрирует:

знания: теоретические положения для решения данной ситуационной задачи, методику решения задачи и анализ полученных данных;

умения: анализировать информацию, подбирать необходимые формулы для ее решения;

навыки: применения теоретических знаний для решения предложенной задачи

Критерии оценки решения ситуационной задачи

отлично	Обучающийся демонстрирует:
O I VIII I I V	- правильный ответ на вопрос задачи;
	- грамотное и подтвержденное формулами решение задачи;
	- отличные навыки владения расчетами
хорошо	Обучающийся демонстрирует:
* -	- правильный ответ задачи;
	- не грубые ошибки в пояснении явлений данной задачи,
	- неточности в рисунках и чертежах;
	- неуверенность в ответе на дополнительные вопросы
удовлетворительно	Обучающийся демонстрирует:
	- неверный ответ;
	- размышления сбивчивы, хотя и содержат правильные моменты;
v.	- затрудняется в выборе верной формулы;
	- трулности в выражении из формулы величин
неудовлетворительно	Обучающийся демонстрирует:
	- неверный ответ;
	- отсутствие знаний формул данного раздела физики;
	- отсутствие навыка выражения величин из формул.

Разработчик: доцент, Кочелаевская К.В.

