ФИО: Соловьев Дмитрий Александрович

Должность: ректор ФГБОУ ВО Вавиловский университет. Дата подписания: 17.09-2024 12:30.25 ФЕДЕРАЦИИ

Уникальный программный ключ:

528682d78e671e566ab07999982172f735a12

Федеральное государственное бюджетное образовательное учреждение высшего образования «Саратовский государственный аграрный университет имени Н.И. Вавилова»

> **УТВЕРЖДАЮ** аведующий кафедрой /Трушкин В.А./ 2019 г.

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ

Дисциплина

Физика

Направление подготовки

35.03.01 Лесное дело

Направленность

(профиль)

Лесоуправление, охотничий сервис и туризм

Квалификация

выпускника

Бакалавр

Нормативный срок

обучения

4 года

Форма обучения

Заочная

Кафедра-разработчик

Инженерная физика, электрооборудование

и электротехнологии

Ведущий преподаватель

Кочелаевская К.В., доцент

Разработчик: доцент, Кочелаевская К.В.

Содержание

1	Перечень компетенций с указанием этапов их формирования в процесс
	освоения ОПОП
2	Описание показателей и критериев оценивания компетенций на различных
	этапах их формирования, описание шкал оценивания 5
3	Типовые контрольные задания или иные материалы, необходимые дл
	оценки знаний, умений, навыков и (или) опыта деятельности
	характеризующих этапы формирования компетенций в процессе освоени
	образовательной программы 6
4	Методические материалы, определяющие процедуры оценивания знаний
	умений, навыков и (или) опыта деятельности, характеризующих этапы и
	формирования

1. Перечень компетенций с указанием этапов их формирования в процессе освоения ОПОП

В результате изучения дисциплины «Физика» обучающиеся, в соответствии с ФГОС ВО по направлению подготовки 35.03.01 Лесное дело, утвержденного приказом Министерства образования и науки РФ от 31.05.2017 г. № 481, формируют следующие компетенции:

Формирование компетенций в процессе изучения дисциплины «Физика»

Таблина 1

					таолица т
Компетенция		Индикаторы	Этапы	Виды занятий	Оценочные
Код	Наименование	достижения	формировани	для	средства для
		компетенций	Я	формирования	оценки уровня
			компетенции	компетенции	сформированности
			в процессе		компетенции
			освоения		
			ОПОП (курс) [*]		
1	2	3	4	5	6
ОПК-	Способен	ОПК-1.1	1	лекции/лабора	тестовые
1	решать	выявление и		торные	задания/лаборатор
	типовые	классификация		занятия	ная работа
	задачи	физических,			
	профессиональ	химических и			
	ной	биологических			
	деятельности	процессов,			
	на основе	протекающих			
	знаний	на объекте			
	основных	профессиональн			
	законов	ой деятельности			
	математическ				
	ux u				
	естественных				
	наук с				
	применением				
	информационн				
	0-				
	коммуникацио нных				
	технологий				
	псанолосии				
1					

Примечание:

Компетенция ОПК-1 — также формируется в ходе освоения дисциплин: математика (базовый уровень), химия, экология, ботаника, геодезия, почвоведение, информатика, физиология растений, лесная фитопатология, лесная энтомология, лесная селекция, цифровые технологии в лесном деле, ГИС в лесном деле, информационное обеспечение лесного дела, производственная практика технологическая, создание и оформление лесных карт, практическое применение спутниковой навигации в лесном и охотничьем хозяйстве.

2. Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

Перечень оценочных материалов

Таблица 2

№ п/п	Наименование оценочного материала	Краткая характеристика оценочного материала	Представление оценочного средства в ОМ
1	лабораторная работа	средство, направленное на изучение практического хода тех или иных процессов, исследование явления в рамках заданной темы с применением методов, освоенных на лекциях, сопоставление полученных результатов с теоретическими концепциями, осуществление интерпретации полученных результатов, оценивание применимости полученных результатов на практике	лабораторные работы
2	тестирование	метод, который позволяет выявить уровень знаний, умений и навыков, способностей и других качеств личности, а также их соответствие определенным нормам путем анализа способов выполнения обучающимися ряда специальных заданий	комплект тестовых заданий
3	собеседование	средство контроля, организованное как специальная беседа педагогического работника с обучающимся на темы, связанные с изучаемой дисциплиной и рассчитанной на выяснение объема знаний обучающегося по определенному разделу, теме, проблеме и т.п.	вопросы по темам дисциплины: - перечень вопросов для устного опроса задания для самостоятельной работы

Программа оценивания контролируемой дисциплины

Таблица 3

№ п/п	Контролируемые разделы (темы дисциплины)	Код контролируемой компетенции (или ее части)	Наименование оценочного материала
1	$\overline{2}$	3	4

№ π/π	Контролируемые разделы (темы дисциплины)	Код контролируемой компетенции (или ее части)	Наименование оценочного материала
1	2	3	4
2	Механика. Молекулярная физика		лабораторная работа
3	Электростатика.		Лабораторная работа
4	Электричество и магнетизм	ОПК-1	Лабораторная работа
5	Оптика		лабораторная работа
6	Оптика. Квантовая физика		Лабораторная работа

Описание показателей и критериев оценивания компетенций по дисциплине «Физика» на различных этапах их формирования, описание шкал оценивания

Таблица 4

Код	Индикаторы	Показатели и критерии оценивания результатов обучения			
компетенци	достижения	ниже	пороговый	продвинутый	высокий
и, этапы	компетенций	порогового	уровень	уровень	уровень
освоения		уровня	(удовлетвори	(хорошо)	(отлично)
компетенци		(неудовлетвори	тельно)		
И		тельно)			
1	2	3	4	5	6
ОПК-1,	ОПК-1.1	обучающийся	удовлетворит	достаточно	отлично
1 курс	выявление и	не знает	ельно знает	хорошо	знает
	классификаци	значительной	основные	владеет	современную
	я физических,	части	законы,	основными	физическую
	химических и	материала,	понятия,	законами	картину
	биологически	плохо	формулы из	физики,	мира,
	х процессов,	ориентируется в	различных	может	взаимосвязь
	протекающих	теории, не знает	разделов	вывести	между
	на объекте	практику	курса	формулы из	физическими
	профессионал	применения	физики.	различных	явлениями
	ьной	материала,		разделов	ИЗ
	деятельности	допускает		курса	различных
		ошибки в		физики.	областей
		описании			физики.
		процессов и			
		явлений.			

3. Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы

3.1. Лабораторная работа

Тематика лабораторных работ устанавливается в соответствии с ФГОС ВО по данному направлению подготовки и рабочей программой дисциплины.

Количество вариантов заданий как правило соответствует количеству обучающихся.

Перечень тем лабораторных работ

- Изучение законов колебательного движения
- Определение показателя адиабаты
- Изучение электростатического поля с помощью электролитической ванны.
- Определение показателя преломления стекла при помощи микроскопа
- Исследование фотоэффекта

3.2. Текущий контроль

Текущий контроль по дисциплине «Физика» позволяет оценить степень восприятия учебного материала и проводится для оценки результатов изучения разделов/тем дисциплины.

Вопросы, рассматриваемые на аудиторных занятиях

- 1. Материальная точка. Система отсчета.
- 2. Скорость средняя и мгновенная.
- 3. Путь при произвольной зависимости от времени.
- 4. Ускорение. Скорость и путь при равноускоренном движении.
- 5. Ускорение при движении тела с постоянной скоростью по окружности.
- 6. Угловая скорость. Направление вектора угловой скорости.
- 7. Период и частота вращения. Связь с угловой скоростью.
- 8.Угловое ускорение; связь с тангенциальным ускорением.
- 9.Первый закон Ньютона. Инерциальные и неинерциальные системы отсчета.
- 10.Второй закон Ньютона. Сила. Масса тела.
- 11. Третий закон Ньютона. Направление сил, действующих на тела.
- 12. Импульс тела. Выражение второго закона Ньютона через импульс.
- 13.Сила тяжести и вес тела.
- 14.Сила трения. Сила упругости.
- 15. Закон сохранения импульса в замкнутой системе.
- 16.Полная механическая энергия. Закон сохранения и превращения энергии.
- 17. Абсолютно упругий и неупругий удар шаров.

- 18. Основные положения молекулярно-кинетической теории.
- 19.Основные понятия термодинамики.
- 20. Уравнение состояния тела (вещества).
- 21. Уравнение состояния идеального газа для данной массы газа (уравнение Менделеева Клапейрона).
- 22. Уравнение состояния идеального газа в виде зависимости давления от температуры и концентрации молекул.
- 23. Основное уравнение молекулярно кинетической теории газов.
- 24. Внутренняя энергия термодинамической системы.
- 25. Число степеней свободы молекул.
- 26. Связь внутренней энергии вещества с числом степеней свободы.
- 27. Первое начало термодинамики.
- 28. Работа, совершаемая газом при изменении его объёма.
- 29. Теплоёмкость тела, молярная и удельная теплоёмкости.
- 30. Работа, совершаемая идеальным газом при различных процессах (изохорическом, изобарическом, изотермическом, адиабатическом).
- 31. Коэффициент полезного действия для кругового процесса.
- 32. Закон Кулона. Направление силы, действующей на заряд.
- 33. Напряженность электрического поля.
- 34. Принцип суперпозиции электрических полей.
- 35. Работа сил электрического поля по перемещению точечного заряда.
- 36. Потенциальная энергия точечного заряда в поле другого точечного заряда.

Потенциал. Работа по перемещению заряда между точками с разными потенциалами.

- 37. Связь между напряженностью электрического поля и потенциалом.
- 38. Электроемкость уединенного проводника. Емкость шара.
- 39. Конденсаторы. Емкость плоского конденсатора. Емкость при последовательном и параллельном соединениях конденсаторов.
- 40. Энергия заряженного конденсатора.
- 41. Сила тока. Сила тока в случае движения положительных и отрицательных зарядов. Вектор плотности тока, связь с силой тока.
- 42. Закон Ома для участка цепи. Сопротивление цилиндрического проводника. Зависимость удельного сопротивления от температуры.
- 43. Сопротивление при последовательном и параллельном соединении проводников.
- 44. Электродвижущая сила. Падение напряжения на неоднородном участке цепи. Закон Ома
- 45. Работа и мощность тока. Закон Джоуля-Ленца.
- 46. Мощность, развиваемая источником тока. Мощность, выделяемая в нагрузке. Коэффициент полезного действия источника тока.
- 47. Магнитное поле. Магнитная индукция, принцип суперпозиции магнитных полей. Силовые линии магнитного поля. Закон Био Савара Лапласа.
- 48. Магнитная индукция прямого проводника с током.
- 49. Сила Лоренца. Направление силы, действующей на положительный и отрицательный заряды.
- 50. Закон Ампера. Физический смысл вектора магнитной индукции В.

- 51. Сила взаимодействия двух бесконечных прямых проводников с током. Правило левой руки.
- 52. Магнитный поток.
- 53. Работа, совершаемая при перемещении проводника с током в магнитном поле. Работа при повороте контура в магнитном поле на угол.
- 54. Поток вектора магнитной индукции через замкнутую поверхность.
- 55. Электромагнитная индукция. Индукционный ток. Правило Ленца.
- 56. Самоиндукция. Индуктивность. Индуктивность соленоида.
- 57. ЭДС самоиндукции.
- 58. Энергия магнитного поля. Плотность энергии магнитного поля.
- 59. Световой вектор, характер колебаний светового вектора.
- 60. Абсолютный показатель преломления, связь с электрической и магнитной проницаемостью среды. Дисперсия света.
- 61. Длина и частота световых волн. Связь длины и частоты световой волны в среде и вакууме.
- 62. Основные законы геометрической оптики. Абсолютный и относительный показатели преломления. Явление полного внутреннего отражения.
- 63. Поляризация света. Естественный и поляризованный свет.
- 64. Принцип Гюйгенса. Дифракция света, виды дифракции.
- 65. Фотоэффект. Внешний и внутренний фотоэффект. Три закона внешнего фотоэффекта.
- 66. Объяснение фотоэффекта с помощью квантовой теории. Формула Эйнштейна для внешнего фотоэффекта.
- 67. Фотон. Масса, энергия, импульс. Основные свойства фотона.
- 68. Опыты Резерфорда. Ядерная модель атома Резерфорда.
- 69. Строение ядра. Энергия связи в ядре.
- 70. α , β , γ –излучения.

Вопросы для самостоятельного изучения

- 1. Связь между линейными и угловыми величинами.
- 2. Аналогия между вращательным и поступательным движениями.
- 3. Вес тела при движении с ускорением. Невесомость.
- 4. Механическая система. Силы внутренние и внешние
- 5. Кинетическая энергия, вывод формулы через работу.
- 6.Работа и энергия. Мощность
- 7. Закон Дальтона.
- 8. Оценить объем и размер молекул воды.
- 9. Применение первого начала термодинамики к изопроцессам.
- 10.Виды электрических разрядов.
- 11. Проводник во внешнем электрическом поле. Индуцированные заряды.
- 12. Магнитная индукция внутри магнетика.
- 13.Плотность потока энергии в электромагнитной волне.
- 14. Виды конденсаторов и их применение.
- 15. Магнетики и их применение.
- 16.Плотность энергии, плотность потока энергии в электромагнитной волне.

- 17.Плоское и сферические зеркала.
- 18. Линзы. Формула тонкой линзы.
- 19. Виды спектров: линейчатый, полосатый, сплошной.
- 20. Электромагнитные волны. Шкала электромагнитных волн.
- 21. Корпускулярно-волновой дуализм свойств вещества.

3.3.Промежуточная аттестация

Вопросы, выносимые на экзамен

- 1. Материальная точка. Система отсчета.
- 2. Скорость средняя и мгновенная.
- 3. Путь при произвольной зависимости от времени.
- 4. Ускорение. Скорость и путь при равноускоренном движении.
- 5. Ускорение при движении тела с постоянной скоростью по окружности.
- 6. Угловая скорость. Направление вектора угловой скорости.
- 7. Период и частота вращения. Связь с угловой скоростью.
- 8. Угловое ускорение; связь с тангенциальным ускорением.
- 9. Первый закон Ньютона. Инерциальные и неинерциальные системы отсчета.
- 10. Второй закон Ньютона. Сила. Масса тела.
- 11. Третий закон Ньютона. Направление сил, действующих на тела.
- 12. Импульс тела. Выражение второго закона Ньютона через импульс.
- 13.Сила тяжести и вес тела.
- 14. Сила трения. Сила упругости.
- 15. Закон сохранения импульса в замкнутой системе.
- 16.Полная механическая энергия. Закон сохранения и превращения энергии.
- 17. Абсолютно упругий и неупругий удар шаров.
- 18. Связь между линейными и угловыми величинами.
- 19. Аналогия между вращательным и поступательным движениями.
- 20.Вес тела при движении с ускорением. Невесомость.
- 21. Механическая система. Силы внутренние и внешние
- 22. Кинетическая энергия, вывод формулы через работу.
- 23. Работа и энергия. Мощность
- 24. Основные положения молекулярно-кинетической теории.
- 25.Основные понятия термодинамики.
- 26. Уравнение состояния тела (вещества).
- 27. Уравнение состояния идеального газа для данной массы газа (уравнение Менделеева Клапейрона).
- 28. Уравнение состояния идеального газа в виде зависимости давления от температуры и концентрации молекул.
- 29. Основное уравнение молекулярно кинетической теории газов.
- 30. Внутренняя энергия термодинамической системы.
- 31. Закон Дальтона.
- 32. Оценить объем и размер молекул воды.
- 33. Применение первого начала термодинамики к изопроцессам.
- 34. Число степеней свободы молекул.

- 35. Связь внутренней энергии вещества с числом степеней свободы.
- 36. Первое начало термодинамики.
- 37. Работа, совершаемая газом при изменении его объёма.
- 38. Теплоёмкость тела, молярная и удельная теплоёмкости.
- 39. Работа, совершаемая идеальным газом при различных процессах (изохорическом, изобарическом, изотермическом, адиабатическом).
- 40. Коэффициент полезного действия для кругового процесса.
- 41. Закон Кулона. Направление силы, действующей на заряд.
- 42. Напряженность электрического поля.
- 43. Принцип суперпозиции электрических полей.
- 44. Работа сил электрического поля по перемещению точечного заряда.
- 45. Потенциальная энергия точечного заряда в поле другого точечного заряда. Потенциал. Работа по перемещению заряда между точками с разными потенциалами.
- 46. Связь между напряженностью электрического поля и потенциалом.
- 47. Электроемкость уединенного проводника. Емкость шара.
- 48. Конденсаторы. Емкость плоского конденсатора. Емкость при последовательном и параллельном соединениях конденсаторов.
- 49. Энергия заряженного конденсатора.
- 50. Сила тока. Сила тока в случае движения положительных и отрицательных зарядов. Вектор плотности тока, связь с силой тока.
- 51. Закон Ома для участка цепи. Сопротивление цилиндрического проводника. Зависимость удельного сопротивления от температуры.
- 52. Сопротивление при последовательном и параллельном соединении проводников.
- 53. Электродвижущая сила. Падение напряжения на неоднородном участке цепи. Закон Ома
- 54. Работа и мощность тока. Закон Джоуля–Ленца.
- 55. Мощность, развиваемая источником тока. Мощность, выделяемая в нагрузке. Коэффициент полезного действия источника тока.
- 56. Магнитное поле. Магнитная индукция, принцип суперпозиции магнитных полей. Силовые линии магнитного поля. Закон Био Савара Лапласа.
- 57. Магнитная индукция прямого проводника с током.
- 58. Сила Лоренца. Направление силы, действующей на положительный и отрицательный заряды.
- 59. Закон Ампера. Физический смысл вектора магнитной индукции В.
- 60. Сила взаимодействия двух бесконечных прямых проводников с током. Правило левой руки.
- 61.Виды электрических разрядов.
- 62. Проводник во внешнем электрическом поле. Индуцированные заряды.
- 63. Магнитная индукция внутри магнетика.
- 64.Плотность потока энергии в электромагнитной волне.
- 65. Виды конденсаторов и их применение.
- 66. Магнетики и их применение.
- 67.Плотность энергии, плотность потока энергии в электромагнитной волне.
- 68. Магнитный поток.

- 69. Работа, совершаемая при перемещении проводника с током в магнитном поле. Работа при повороте контура в магнитном поле на угол.
- 70. Поток вектора магнитной индукции через замкнутую поверхность.
- 71. Электромагнитная индукция. Индукционный ток. Правило Ленца.
- 72. Самоиндукция. Индуктивность. Индуктивность соленоида.
- 73. ЭДС самоиндукции.
- 74. Энергия магнитного поля. Плотность энергии магнитного поля.
- 75. Световой вектор, характер колебаний светового вектора.
- 76. Абсолютный показатель преломления, связь с электрической и магнитной проницаемостью среды. Дисперсия света.
- 77. Длина и частота световых волн. Связь длины и частоты световой волны в среде и вакууме.
- 78. Основные законы геометрической оптики. Абсолютный и относительный показатели преломления. Явление полного внутреннего отражения.
- 79. Поляризация света. Естественный и поляризованный свет.
- 80. Принцип Гюйгенса. Дифракция света, виды дифракции.
- 81.Плоское и сферические зеркала.
- 82. Линзы. Формула тонкой линзы.
- 83. Виды спектров: линейчатый, полосатый, сплошной.
- 84. Электромагнитные волны. Шкала электромагнитных волн.
- 85. Корпускулярно-волновой дуализм свойств вещества.
- 86. Фотоэффект. Внешний и внутренний фотоэффект. Три закона внешнего фотоэффекта.
- 87. Объяснение фотоэффекта с помощью квантовой теории. Формула Эйнштейна для внешнего фотоэффекта.
- 88. Фотон. Масса, энергия, импульс. Основные свойства фотона.
- 89. Опыты Резерфорда. Ядерная модель атома Резерфорда.
- 90. Строение ядра. Энергия связи в ядре.
- 91. α, β, γ –излучения.

Образец экзаменационного билета.

МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего образования

«Саратовский государственный аграрный университет имени Н. И. Вавилова» Кафедра: Инженерная физика, электрооборудование и электротехнологии Дисциплина: Физика.

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № __1

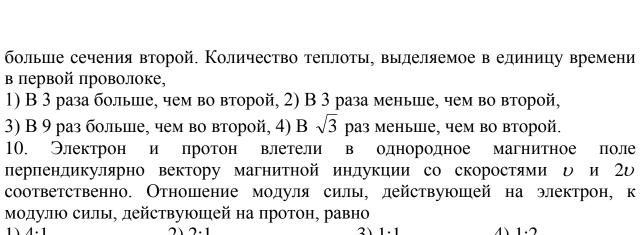
1. Механическое движение тела. Поступательное движение тела. Материальная точка.

Скорость и путь при равномерном движении. Перемещение.

- 2. Момент инерции материальной точки. Момент инерции твердого тела. Теорема Штейнера.
- 3. При изобарном расширении 20г водорода его объем увеличился в 2раза. Начальная температура газа 300К. Определите работу расширения газа, изменение внутренней энергии и количество теплоты, сообщенной этому газу.

Зав. кафедрой	_ В.А. Трушкин
3.4. Тестовые задания	
Разработаны тестовые задания по раз	вличным разделам физики,
использующиеся для закрепления обучающи	
пройденного материала.	1
Ниже приведены типовые тестовые задания пр	и изучении курса «Физика».
1. Тангенциальное ускорение характеризует:	
1) изменение скорости по величине 2) направлению;	изменение скорости по
3) изменение скорости в единицу времени	4) изменение скорости и по
величине и по направлению	,
2. Утверждение, что материальная точ	ка покоится или движется
прямолинейно и равномерно, если на нее не де	йствуют другие тела:
1) верно при любых условиях, 2) верно для неи	
3)верно для инерциальных систем отсчета 4) ве	рно при малой скорости точки
3. На тело, движущееся вдоль оси х, действует	сила, изменяющаяся по закону
$F = 3x^2 + 3$ Н. Работа силы на первых двух метр	рах пути равна
1) 10 Дж 2) 14 Дж 3) 16 Дж	4) 32 Дж
4. При температуре 36° С средняя квадра	атичная скорость молекул О2
отличается от средней арифметической скорост	ги этих молекул в раз
1) 1,38 2) 1,28 3) 1,13	4) 0,36
5. При адиабатическом сжатии 2 молей идеа	ального одноатомного газа его
температура повысилась на 10 К. Работа, сов	вершаемая над газом при таком
сжатии, равна	
1) 166 Дж 2) 250 Дж 3) 375 Дж 4) 415 Дж	C
6. Как изменится сила кулоновского взаимоде	-
если расстояние между ними уменьшить в три	раза?
1) увеличится в 3 раза 2) уменьшится в 3 раза	
3) увеличится в 9 раз 4) уменьшится в 9 раз	
7. Пластины плоского конденсатора изолиј	
диэлектрика. Конденсатор заряжен до поте	
источника напряжения. Определить диэлектр	
при его удалении разность потенциалов мет	жду пластинами конденсатора
возрастает до 3 кВ.	

1) 0,3 8. Амперметр имеет сопротивление 200 Ом и при силе тока I =100 мкА стрелка отклоняется на всю шкалу. Какое добавочное сопротивление надо подключить, чтобы прибор можно было использовать как вольтметр для измерения напряжения 2 В?


3)6

4) 9

2) 3

3) 1,98 MO_M 4) прибор нельзя 1) 19,8 кОм 2) 198 Om использовать как вольтметр

9. Две проволоки одинаковой длины из одного и того же материала включены последовательно в электрическую цепь. Сечение первой проволоки в три раза

- 1) 4:1
 2) 2:1
 3) 1:1
 4) 1:2

 11. По двум длинным параллельным проводам текут
- 11. По двум длинным параллельным проводам текут токи в противоположных направлениях, причем $I_1 = 2I_2$. Расстояние между ними равно a. Точки в которых магнитное поле равно нулю находятся:
- 1) на прямой, которая параллельна проводам и находится справа от тока I_2 на расстоянии x = a от тока I_2 и на расстоянии x + a от тока I_1
- 2) на прямой, которая параллельна проводам и находится на расстоянии x = a от тока I_1 и на расстоянии x = 0 от тока I_2 ;
- 3) на расстоянии x = a от первого провода и на расстоянии x = a от второго провода;
- 4) на расстоянии x = a от второго провода и на расстоянии x + 2a от первого провода
- 12. Явление усиления или ослабления колебаний при наложении двух или более когерентных волн называется
- 1) дифракцией, 2) поляризацией, 3) интерференцией, 4) фотоэлектрическим эффектом, 5) дисперсией.
- 13. Оптическая разность хода волн от двух источников в некоторой точке равна 0,660 мкм. Каким будет результат интерференции в этой точке, если длина волны а) 440 нм б) 660 нм
- 1) В обоих случаях максимумы, 2) в обоих случаях минимумы,
- 3) в случае а) максимум, в случае б) минимум,
- 4) в случае а) минимум, в случае б) максимум.
- 14. Период дифракционной решетки 2,5 мкм. Сколько максимумов будет содержать спектр, образующийся при падении на решетку света с длиной волны 600 нм
- 1) 9 2) 8 3) 7 4) 4
- 15. Если температуру абсолютно черного тела уменьшить в 4 раза, то длина волны, соответствующая максимуму испускательной способности излучения абсолютно черного тела
- 1) уменьшится в 4 раза; 2) уменьшится в 2 раза;
- 3) увеличится в 6 раз; 4) увеличится в 4 раза
- 16. Энергия фотона, поглощенного при фотоэффекте, равна E. Кинетическая энергия электрона, вылетевшего с поверхности этого металла при фотоэффекте,
- 1) больше E 2) меньше E 3) равна E
- 4) может быть больше или меньше E при разных условиях

- 17. Чему равна энергия, масса и импульс фотона для рентгеновских лучей $(v=1018 \Gamma_{II})$?
- А. $6,62*10^{-16}$ Дж; $7,3*10^{-33}$ кг; $2,2*10^{-24}$ кг * м/с Б. $6,62*10^{-17}$ Дж; $7,3*10^{-30}$ кг; $2,2*10^{-20}$ кг * м/с В. $6,62*10^{-15}$ Дж; $7,3*10^{-34}$ кг; $2,2*10^{-25}$ кг * м/с

- Γ . 6,62*10⁻¹⁹ Дж; 7,3*10⁻³⁶кг; 2,2*10⁻²⁷ кг * м/с
- 18. Что одинаково у атомов разных изотопов одного химического элемента и что у них различно?
- А) одинаковы заряды и массы ядер, различны химические свойства
- Б) одинаковы заряды ядер, различны массы и химические свойства
- В) одинаковы заряды ядер и химические свойства атомов, различны массы ядер
- Г) одинаковы массы ядер и химические свойства, различны заряды ядер
- 19. Какая доля радиоактивных ядер останется нераспавшейся через интервал времени, равный двум периодам полураспада?
- 1) 25%
- 2) 50%
- 3) 75%

- 4) 10%
- 20. В результате реакции синтеза ядра дейтерия с ядром $\begin{subarray}{c} X \\ Y \end{subarray}$ образуется ядро бора и нейтрон в соответствии с реакцией:

$${}_{1}^{2}H + {}_{Y}^{X}Z \rightarrow {}_{5}^{10}B + {}_{0}^{1}n$$

Каковы массовое число X и заряд Y (в единицах элементарного заряда) ядра, вступившего в реакцию с дейтерием?

20.

4. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций

Контроль обучения, результатов этапов И уровня формирования компетенций по дисциплине «Физика» осуществляется через проведение текущего, рубежных, выходного контролей и контроля самостоятельной работы.

Формы текущего, промежуточного и итогового контроля разрабатываются кафедрой исходя из специфики дисциплины, и утверждаются на заседании кафедры.

4.1 Критерии оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы

Описание шкалы оценивания достижения компетенций по дисциплине приведено в таблице 6.

Уровень	Отметка по пятибалльной системе	Описание
освоения	(экзамен – 1 курс)*	
компетенци		
И		

Уровень	Отметка по	пятибалльно	ой системе	Описание
освоения компетенци		кзамен – 1 курс)*		
И	«отпинно»	«зачтено»	//29ПТЕНО	Обучающийся обнаружил всестороннее,
высокий	«отлично»	«зачтено»	«зачтено (отлично) »	Ооучающийся обнаружил всестороннее, систематическое и глубокое знание учебного материала, умеет свободно выполнять задания, предусмотренные программой, усвоил основную литературу и знаком с дополнительной литературой, рекомендованной программой. Как правило, обучающийся проявляет творческие способности в понимании, изложении и использовании материала
базовый	«хорошо»	«зачтено»	«зачтено (хорошо) »	Обучающийся обнаружил полное знание учебного материала, успешно выполняет предусмотренные в программе задания, усвоил основную литературу, рекомендованную в программе
пороговый	«удовлетвори тельно»	«зачтено»	«зачтено (удовлетв орительно)»	Обучающийся обнаружил знания основного учебного материала в объеме, необходимом для дальнейшей учебы и предстоящей работы по профессии, справляется с выполнением практических заданий, предусмотренных программой, знаком с основной литературой, рекомендованной программой, допустил погрешности в ответе на экзамене и при выполнении экзаменационных заданий, но обладает необходимыми знаниями для их устранения под руководством преподавателя
_	«неудов- летвори- тельно»	«не зачтено»	«не зачтено (неудовлет- ворительно) »	Обучающийся обнаружил пробелы в знаниях основного учебного материала,

4.2.1. Критерии оценки устного ответа при текущем контроле и промежуточной аттестации

При ответе на вопрос обучающийся демонстрирует:

знания: основных законов и явлений физики, физических соотношений, описывающих данные явления, знает практические примеры применения указанных явлений в технике и технологии.

умения: проводить физические эксперименты и последующий расчет параметров физических процессов с использованием современных методов и средств обработки экспериментальных результатов и расчета погрешностей.

владение навыками: проведения физического эксперимента и последующего расчета параметров физических процессов с использованием современных методов и средств обработки экспериментальных результатов и расчета погрешностей.

Критерии оценки устного ответа

отлично	обучающийся демонстрирует:
	- знание материала, в т.ч. основных законов и явлений физики,
	практики применения этих законов, исчерпывающе и
	последовательно, четко и логично излагает материал, хорошо в нем
	ориентируется, не затрудняется с ответом при изменений условий
	задания.
	- умение проводить физические эксперименты и последующий
	расчет параметров физических процессов с использованием
	современных методов и средств обработки экспериментальных
	результатов и расчета погрешностей.
	- успешное и системное владение навыками проведения физического
	эксперимента и последующего расчета параметров физических
	процессов с использованием современных методов и средств
	обработки экспериментальных результатов и расчета
	погрешностей.
уорошо	обучающийся демонстрирует:
хорошо	- знание материала, не допускает существенных неточностей;
	- в целом успешное, но содержащее отдельные пробелы, умение
	проводить физические эксперименты и последующий расчет
	параметров физических процессов, а также обработку
	экспериментальных результатов и расчет погрешностей;
	- в целом успешное, но содержащее отдельные ошибки владение
	навыками проведения физического эксперимента и последующего
	расчета параметров физических процессов с использованием
	современных методов и средств обработки экспериментальных
	результатов и расчета погрешностей.
удовлетворительно	обучающийся демонстрирует:
	- знание только основного материала, но не знает деталей, допускает
	неточности в формулировках основных физических законов и
	явлений, нарушает логическую последовательность в изложении
	программного материала;
	в целом успешное, но не системное умение проведения физических
	экспериментов и последующего расчета параметров физических
	процессов, а также обработку экспериментальных результатов и
	расчет погрешностей;
	- в целом успешное, но не системное владение навыками проведения
	физического эксперимента и последующего расчета параметров
	физических процессов с использованием современных методов и
	средств обработки экспериментальных результатов и расчета
	погрешностей.
наупар патраритан на	обучающийся:
неудовлетворительно	
	- не знает значительной части программного материала, плохо
	ориентируется в физических явлениях и законах, не знает практику

_
их применения, допускает при этом существенные ошибки;
- не умеет использовать методы и приемы физических
исследований, допускает при этом существенные ошибки,
неуверенно, с большими затруднениями выполняет
самостоятельную работу, большинство заданий, предусмотренных
программой, не выполнено;
- обучающийся не владеет навыками постановки и проведения
физических экспериментов и последующего расчета параметров
физических процессов, допускает при этом существенные ошибки,
не умеет рассчитывать погрешности полученных значений,
большинство заданий, предусмотренных программой дисциплины,
не выполнено.

4.2.2. Критерии оценки лабораторных работ

При выполнении лабораторных работ обучающийся демонстрирует: **знания:** теории раздела физики, которому соответствует данная работа **умения:** грамотно провести эксперимент и снять показания с приборов **владение навыками:** расчетов экспериментальных данных, апробации результатов эксперимента.

Критерии оценки выполнения лабораторных работ

	ерин оценки выполнения лаоораторных расот			
отлично	Правильное оформление работы. Соблюдён порядок выполнения			
	работы. Все результаты измерений записаны верно и с учётом			
	погрешности. Проведены правильные расчёты с учётом			
	погрешностей. Учтены размерности величин. Все результаты			
	измерений и вычислений занесены в таблицу с соблюдением			
	обозначений и размерности величин. В итоге сделан вывод,			
	соответствующий цели работы.			
хорошо	С неточностями оформлена работа. Частично правильно соблюдён			
	порядок выполнения работы. Результаты измерений записаны верно,			
	но без учёта погрешностей. Не учтены размерности величин.			
	Результаты измерений и вычислений частично занесены в таблицу.			
	В итоге сделан вывод, не полностью соответствующий цели работы.			
удовлетворительно	Не верно оформлена работа. Не совсем верно соблюдён порядок			
	выполнения работы. Результаты измерений записаны верно, но без			
	учёта погрешностей. Не учтены размерности величин. Результаты			
	измерений и вычислений частично занесены в таблицу. В итоге			
	сделан вывод, не полностью соответствующий цели работы.			
неудовлетворительно	Не верно оформлена работа. Не соблюдён порядок выполнения			
_	работы. Результаты измерений записаны не верно, без учёта			
	погрешностей. Не учтены размерности величин. Результаты			
	измерений и вычислений не занесены в таблицу. В итоге сделан			
	вывод, не соответствующий цели работы.			

4.2.3. Критерии оценки тестовой работы

При написании тестовой работы обучающийся демонстрирует:

знания: того раздела дисциплины, в т.ч. физических законов и явлений, по которому проводится тестовая работа;

умения: проводить расчеты с помощью формул, описывающих те или иные физические законы и явления;

владение навыками: проведения расчетов по формулам, описывающим те или иные физические законы и явления.

Критерии опенки тестовой работы

Критерии оценки тестовой работы	
Отлично	обучающийся демонстрирует:
	- знание того раздела дисциплины, в т.ч. физических законов и явлений,
	по которому проводится тестовая работа.
	- умение проводить расчеты с помощью формул, описывающих те или
4	иные физические законы и явления.
	- владение навыками проведения расчетов по формулам, описывающим
	те или иные физические законы и явления.
Хорошо	обучающийся демонстрирует:
	- знание того раздела дисциплины, в т.ч. физических законов и явлений,
	по которому проводится тестовая работа, не допускает существенных
	ошибок, при этом присутствуют несущественные погрешности;
	умение проводить расчеты с помощью формул, описывающих те или
	иные физические законы и явления, не допускает при этом
	существенных ошибок, но присутствуют несущественные
	погрешности;
-	- в целом успещное, но содержащее отдельные погрешности владение М Т
2	навыками расчетов по формулам, описывающим те или иные
	физические законы и явления.
У довлетворитель	обучающийся демонстрирует:
но	- неполное знание того раздела дисциплины, в т.ч. физических законов и
	явлений, по которому проводится тестовая работа, допускает
	существенные неточности при этом;
	- недостаточное умение проводить расчеты с помощью формул,
	описывающих те или иные физические законы и явления;
	- недостаточное владение навыками проведения расчетов по формулам,
	описывающим те или иные физические законы и явления.
Неудовлетворите	обучающийся демонстрирует:
льно	отсутствие знаний того раздела дисциплины, в т.ч. физических законов
8	и явлений, по которому проводится тестовая работа;
	- неумение проводить расчеты с помощью формул, описывающих те или
	иные физические законы и явления;
(4)	- не владение навыками проведения расчетов по формулам,
	описывающим те или иные физические законы и явления.

Разработчик: доцент, Кочелаевская К.В.

X

15.

14

12,525

.11.5.5

. 0.111