Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Сол вьев ДМИМИМСКЕНДВОЕЙ ВО СЕЛЬСКОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ

Должность: ректор ФГБОУ во Вакиловский университе редпыное государственное бюджетное Дата подписания: 23:09.2024 09:03:41
Уникальный программыми клюм

528682d78e671e566ab07101

высшего образования

«Саратовский государственный аграрный

университет имени Н. И. Вавилова»

УТВЕРЖДАЮ

Заведующий кафедрой

/Трушкин В.А./ 2021 г.

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ

Дисциплина

ФИЗИКА

Направление подготовки

19.03.03 ПРОДУКТЫ ПИТАНИЯ животного происхождения

Направленность (профиль)

ТЕХНОЛОГИЯ МЯСА И МЯСНЫХ

ПРОДУКТОВ

Квалификация

выпускника

Бакалавр

Нормативный срок

обучения

4 года

Форма обучения

Очная

Кафедра-разработчик

Инженерная физика, электрооборудование и электротехнологии

Ведущий преподаватель

Четвериков Е.А., доцент

Разработчик: доцент, Четвериков Е.А.

(подпись)

Саратов 2021

Содержание

1	Перечень компетенций с указанием этапов их формирования в процессе освоени
	ОПОП
2	Описание показателей и критериев оценивания компетенций на различны
	этапах их формирования, описание шкал оценивания4
3	Типовые контрольные задания или иные материалы, необходимые для оценки
	знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы
	формирования компетенций в процессе освоения образовательной
	программы
4	Методические материалы, определяющие процедуры оценивания знаний,
	умений, навыков и (или) опыта деятельности, характеризующих этапы их
	формирования

1. Перечень компетенций с указанием этапов их формирования в процессе освоения ОПОП

В результате изучения дисциплины «Физика» обучающиеся, в соответствии с ФГОС ВО по направлению подготовки 19.03.03 Продукты питания животного происхождения / Технология мяса и мясных продуктов, утвержденного приказом Министерства образования и науки РФ от 11.08.2020 г. № 936, формируются следующие компетенции:

Формирование компетенций в процессе изучения дисциплины «Физика»

Таблица 1

Компетенция		Индикаторы	Этапы	Виды занятий	Оценочные
Код	Наименование	достижения	формирования	для	средства для
		компетенций	компетенции	формирования	оценки уровня
			в процессе	компетенции	сформированности
			освоения		компетенции
			ОПОП (курс)		
1	2	3	4	5	6
ОПК-	Способен	ОПК-3.2	1	лекции,	лабораторная
3	использовать	Использует		лабораторные	работа,
	знания	знания		занятия	собеседование,
	инженерных	инженерных			реферат (доклад),
	процессов при	наук для			самостоятельная
	решении	понимания			работа
	профессиональ	процессов,			
	ных задач и	происходящих			
	эксплуатации	при			
	современного	переработке			
	технологическ	продуктов			
	ОГО	животного			
	оборудования	происхождения			
	и приборов				

Примечание:

ОПК-3 Компетенция формируется также В ходе освоения дисциплин: «Технические аспекты проектирования оборудования ДЛЯ производства продуктов питания», «Технология мяса и мясных продуктов», «Проектирование «Дисциплины по предприятий мясной отрасли», выбору Б1.В.ДВ.02», «Технология производства мясных полуфабрикатов и быстрозамороженных блюд», «Интенсивные технологии производства мясных деликатесных изделий»,

«Преддипломная практика», «Выполнение, подготовка к процедуре защиты и защита выпускной квалификационной работы», «Процессы и аппараты пищевых производств», «Гидромеханические процессы пищевых производств», «Цифровые технологии в технологии продуктов питания животного происхождения», «Реология и текстурный анализ мяса и мясных продуктов», «Технологическая практика», «Технологическое оборудование», «Проектирование предприятий мясной отрасли», «Технологическое оборудование мясной отрасли», «Управление проектами в мясной отрасли», «САПР в проектировании предприятий мясной отрасли», «Тепло- и холодильная техника», «Научно-исследовательская работа».

2. Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

Перечень оценочных материалов

Таблица 2

$N_{\underline{0}}$	Наименование	Краткая характеристика оценочного	Представление
Π/Π	оценочного	материала	оценочного
	материала		средства в ОМ
1.	Собеседование	Средство контроля, организованное как	Перечень вопросов
		специальная беседа педагогического работника с	для устного опроса
		обучающимся на темы, связанные с изучаемой	
		дисциплиной и рассчитанной на выяснение объема	
		знаний, обучающегося по определенному разделу,	
		теме, проблеме.	
2.	Реферат	Продукт самостоятельной работы студента,	Темы рефератов
	(Доклад)	представляющий собой краткое изложение в	
		письменном виде полученных результатов	
		теоретического анализа определенной	
		научной (учебно-исследовательской) темы,	
		где автор раскрывает суть исследуемой	
		проблемы, приводит различные точки зрения,	
		а также собственные взгляды на нее.	
3.	Лабораторная	Средство, направленное на изучение	Лабораторные
	работа	практического хода тех или иных процессов,	работы
		исследование явления в рамках заданной темы	
		с применением методов, освоенных на	
		лекциях, сопоставление полученных	
		результатов с теоретическими концепциями,	
		осуществление интерпретации полученных	
		результатов, оценивание применимости	
		полученных результатов на практике.	

Программа оценивания контролируемой дисциплины

Таблица 3

№ п/п	Контролируемые разделы (темы дисциплины)	Код контролир уемой компетенц ии (или ее части)	Наименование оценочного средства
	2	3	4
1	Физические основы механики		Реферат / Практическое занятие/Собеседование
2	Основы молекулярно-кинетической теории газов		Реферат / Практическое занятие/Собеседование
3	Электричество и магнетизм	ОПК-3	Реферат / Практическое занятие/Собеседование
4	Оптика		Реферат / Практическое занятие/Собеседование
5	Ядерная физика		Реферат /Собеседование
6	Квантовая механика		Реферат /Собеседование

Описание показателей и критериев оценивания компетенций по дисциплине «Физика» на различных этапах их формирования, описание шкал оценивания

Таблица 4

Код	Индикаторы	Показатели и критерии оценивания результатов обучения			
компетенци	достижения	ниже порогового	пороговый	продвинутый	высокий
и, этапы	компетенций	уровня	уровень	уровень	уровень
освоения		(неудовлетворите	(удовлетворите	(хорошо)	(отлично)
компетенци		льно)	льно)		
И					
1	2	3	4	5	6
ОПК-3,	ОПК-3.2	обучающийся не	обучающийся	обучающийся	обучающийся
1 семестр	осваивает	знает значительной	демонстрирует	демонстрирует	демонстрирует
	физико-	части материала,	знания только	знание	знание
	математические	плохо	основных	материала, не	современной
	и химические	ориентируется в	законов,	допускает	физической
	процессы, на	теории, не знает	понятий, формул	существенных	картины мира,
	основе которых	практику	из различных	неточностей,	взаимосвязи
	базируется	применения	разделов курса	хорошо знает	между
	профессиональн	материала,	физики.	основные	физическими
	ая деятельность	допускает		законы,	явлениями из
		существенные		понятия,	различных
		ошибки в описании		формулы и их	областей
		процессов и		выводы из	физики.
		явлений.		различных	
				разделов курса	
				физики.	

3. Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности,

характеризующих этапы формирования компетенций в процессе освоения образовательной программы

3.1. Входной контроль

Цель проведения входного контроля: проверить состояние знаний, умений, навыков обучающихся по материалу раздела, пройденному в прошедшем учебном году (в школе), определить уровень готовности обучающегося и группы в целом к дальнейшему обучению и наметить пути устранения пробелов в знаниях.

Примерный перечень вопросов входного контроля

- 1. Путь, перемещение, скорость, ускорение.
- 2. Путь и скорость при равноускоренном движении.
- 3. Центростремительное ускорение.
- 4. Законы Ньютона.
- 5. Импульс. Выражение второго закона Ньютона через импульс.
- 6.Силы в механике/упругости, трения, тяжести/. Вес тела.
- 7. Механическая работа. Мощность. К. П. Д.
- 8. Механическая энергия и её виды.
- 9. Идеальный газ. Уравнение состояния идеального газа.
- 10.Изопроцессы в газах.
- 11. Первое начало термодинамики.
- 12. Электрические заряды. Закон сохранения электрического заряда.
- 13. Напряженность и потенциал поля точечного заряда.
- 14. Принцип суперпозиции электрических полей.
- 15. Конденсаторы. Ёмкость плоского конденсатора.
- 16. Энергия электрического поля.
- 17. Электрический ток. Сила тока.
- 18. Закон Ома для участка цепи. Сопротивление цилиндрического проводника.
- 19. Сопротивление при последовательном и параллельном соединениях провода.
- 20.Э. Д. С. Закон Ома для замкнутой цепи.
- 21. Работа и мощность тока. Закон Джоуля-Ленца.
- 22. Магнитное поле. Индукция магнитного поля. Магнитная проницаемость.
- 23. Закон Ампера. Направление силы Ампера.
- 24. Сила Лоренца. Направление силы Лоренца.
- 25. Электромагнитная индукция. Закон Фарадея. Правило Ленца.
- 26.Самоиндукция. Индуктивность. Энергия магнитного поля.
- 27. Основные законы геометрической оптики.
- 28. Абсолютный и относительный показатели преломления.
- 29. Явление полного внутреннего отражения.
- 30. Линза. Фокусное расстояние и оптическая сила линзы. Формула линзы.

- 31.Интерференция света.
- 32. Дифракция света.
- 33. Дисперсия света.
- 34. Фотоэффект.
- 35. Три закона внешнего фотоэффекта. Формула Эйнштейна для внешнего фотоэффекта.
- 36. Фотон. Масса, энергия, импульс.
- 37. Радиоактивность и её виды. Закон радиоактивного распада.

3.2. Собеседование

Собеседование представляет собой средство контроля, организованное как специальная беседа преподавателя с обучающимся на темы, связанные с изучаемой дисциплиной, и рассчитанное на выяснение объема знаний обучающегося по определенному разделу, теме или проблеме.

Примерный перечень тем для собеседования

- 1. Материальная точка. Система отсчета. Абсолютно твердое тело.
- 2. Скорость средняя и мгновенная.
- 3. Путь при произвольной зависимости от времени.
- 4. Ускорение. Скорость и путь при равноускоренном движении.
- 5. Ускорение при движении тела с постоянной скоростью по окружности (вывод).
- 6. Угловая скорость. Направление вектора угловой скорости.
- 7. Период и частота вращения. Связь с угловой скоростью.
- 8.Угловое ускорение. Связь линейных и угловых величин при вращении тела (путь, скорость, ускорение).
- 9.Закон Ньютона.
- 10.Импульс тела. Выражение второго закона Ньютона через импульс.
- 11. Сила тяжести и вес тела. Сила трения. Сила упругости.
- 12. Момент импульса при вращении тела вокруг оси. Закон сохранения момента импульса при вращении тела.
- 13. Гармонические колебания. Смещение, скорость и ускорение при гармонических колебаниях. Амплитуда колебаний. Период и частота колебаний. Уравнения гармонических колебаний.
- 14. Энергия тела при гармонических колебаниях: кинетическая,
- 15. Волновой процесс (волны). Основное свойство всех волн. Длина волны, связь скорости волны с длиной волны и частотой.
- 16. Волновое число. Уравнение бегущей сферической волны.
- 17. Основные положения молекулярно-кинетической теории.
- 18. Идеальный газ. Уравнение состояния идеального газа для данной массы газа (уравнение Менделеева Клапейрона).
- 19. Вывод основного уравнения молекулярно кинетической теории газов.

- 20. Явления переноса. Закон теплопроводности Фурье. Закон Фика. Закон Ньютона для силы внутреннего трения.
- 21. Работа, совершаемая газом при изменении его объёма.
- 22. Теплоёмкость газов: при постоянном объёме и при постоянном давлении; связь с числом степеней свободы. Связь молярных теплоёмкостей между собой.
- 23. Адиабатический процесс. Показатель адиабаты, связь с числом степеней свободы. Уравнение Пуассона
- 24.Связь внутренней энергии газа с показателем адиабаты, температурой и давлением.
- 25.Второе начало термодинамики (о направлении перехода тепла). Теорема Карно. Цикл Карно. КПД цикла Карно.
- 26. Приведённое количество теплоты. Энтропия. Принцип возрастания энтропии.
- 27. Закон Кулона. Направление силы, действующей на заряд.
- 28. Напряженность электрического поля.
- 29. Принцип суперпозиции электрических полей.
- 30. Поток вектора напряженности электрического поля. Теорема Гаусса.
- 31. Работа сил электрического поля по перемещению точечного заряда.
- 32. Циркуляция вектора напряженности по замкнутому контуру.51
- 33. Потенциальная энергия точечного заряда в поле другого точечного заряда. Потенциал. Работа по перемещению заряда между точками с разными потенциалами.
- 34. Электроемкость уединенного проводника. Емкость шара.
- 35. Конденсаторы. Емкость плоского конденсатора. Емкость при последовательном и параллельном соединениях конденсаторов.
- 36. Энергия системы точечных зарядов. Энергия заряженного конденсатора. Энергия и плотность энергии электрического поля.
- 37. Сила тока. Вектор плотности тока, связь с силой тока.
- 38. Закон Ома для участка цепи в интегральной и дифференциальной формах. Сопротивление цилиндрического проводника. Зависимость удельного сопротивления от температуры.
- 39. Электродвижущая сила. Падение напряжения на неоднородном участке цепи. Закон Ома для неоднородного участка цепи в интегральной и дифференциальной формах.
- 40. Работа и мощность тока. Закон Джоуля—Ленца в интегральной и дифференциальной формах.
- 41. Магнитный поток.
- 42. Поток вектора магнитной индукции через замкнутую поверхность. Теорема Гаусса для вектора магнитной индукции.
- 43. Циркуляция вектора магнитной индукции В по замкнутому контуру для прямого тока (вывод).
- 44. Электромагнитная индукция. Индукционный ток. Правило Ленца.
- 45. Самоиндукция. Индуктивность. Индуктивность соленоида. ЭДС самоиндукции.

3.3. Рефераты (доклады)

Рекомендуемая тематика рефератов (докладов) по дисциплине приведена в таблице 5.

Темы рефератов (докладов), рекомендованных к написанию при изучении дисциплины "Физика"

Таблица 5

No	Тами пофоротор
п/п	Темы рефератов
1.	Неинерциальные системы отсчета.
2.	Силы инерции.
3.	Центробежная сила инерции при вращательном движении.
4.	Гироскопы.
5.	Сила Кориолиса.
6.	Зависимость ускорения силы тяжести от широты местности.
7.	Космические скорости.
8.	Сложение гармонических колебаний.
9.	Биения.
10.	Распределение давления в жидкости и газе.
11.	Измерение давление в текущей жидкости.
12.	Применение к движению жидкости закона сохранения импульса.
13.	Движение тел в жидкостях и газах.
14.	Звуковые волны, инфразвук и ультразвук.
15.	Эффект Доплера.
16.	Закон распределения молекул газа по скоростям.
17.	Распределения Максвелла и Больцмана.
18.	Барометрическая формула.
19.	Ультраразреженный газ. Эффузия.
20.	Пересыщенный пар и перегретая жидкость.
21.	Ожижение газов.
22.	Тепловое движение в кристаллах.
23.	Теплоемкость кристаллов.
24.	Давление под изогнутой поверхностью жидкости.
25.	Явление на границе жидкого и твердого тел. Смачиваемость.
26.	Капиллярные явления.
27.	Испарение и конденсация.
28.	Плавление и кристаллизация.
29.	Диаграмма состояния. Тройная точка.
30.	Диполь в однородном и неоднородном электрических полях.
31.	Поляризация диэлектриков.
32.	Методы измерения магнитной индукции.
33.	Кривая гистерезиса. Работа перемагничивания ферромагнетика.

34.	Циклотроны и синхрофазотроны.
35.	Эффект Холла.
36.	Термоэлектронная эмиссия. Электронные лампы.
37.	Виды газовых разрядов.
38.	Ионизационные камеры и счетчики.
39.	Газоразрядная плазма.
40.	Применение интерференции и дифракции в современной физике.
	Интерференционная микроскопия. Дифракционная спектроскопия.
41.	Голография и ее использование в современной физике.
42.	Взаимодействие электромагнитных волн с веществом.
43.	Свойства ультрафиолетового и инфракрасного излучения и их
	использование в современной технике.
44.	Использование рентгеновского и гамма излучения в современной технике.
45.	Применение поляризации в современной технике и технологии.
46.	Эффект Комптона.
47.	Опыты Франка и Герца.
48.	Туннельный эффект и его применение.
49.	Рентгеновские спектры излучения и поглощения.
50.	Комбинационное рассеяние.
51.	Оптические квантовые генераторы (лазеры).
52.	Сверхпроводимость. Высокотемпературная сверхпроводимость.
53.	Эффект Джозефсона.
54.	Контактные явления в полупроводниках.
55.	Применение интерференции и дифракции в современной физике.
	Интерференционная микроскопия. Дифракционная спектроскопия.
56.	Голография и ее использование в современной физике.
57.	Взаимодействие электромагнитных волн с веществом.
58.	Свойства ультрафиолетового и инфракрасного излучения и их
	использование в современной технике.
59.	Использование рентгеновского и гамма излучения в современной технике.
60.	Применение поляризации в современной технике и технологии.

3.4. Лабораторная работа

Тематика лабораторных работ устанавливается в соответствии с ФГОС ВО по данному направлению подготовки и рабочей программой дисциплины.

Количество вариантов заданий как правило соответствует количеству обучающихся.

Перечень тем лабораторных работ

- 1. Определение плотности твердых тел правильной геометрической формы.
- 2. Изучение законов колебательного движение математического маятника и определение ускорения силы тяжести.

- 3. Изучения вращательного движения на маятнике Обербека.
- 4. Определение отношения теплоемкостей воздуха (cp/cy) методом Клемана и Дезорма.
- 5. Определение коэффициента поверхностного натяжения жидкости методом отрыва капель.
 - 6. Градуировка термопары и определение температуры тела.
 - 7. Определение сопротивления проводников мостиком Уитстона
 - 8. Снятие вольтамперной характеристики полупроводникового диода.
 - 9. Изучение работы транзистора.
- 10. Измерение показателя преломления и концентрации раствора сахара рефрактометром.
- 11. Определение главного фокусного расстояния и оптической силы собирающей линзы.
- 12. Определение длины световой волны при помощи дифракционной решетки.
 - 13. Определение концентрации раствора сахара с помощью поляриметра.
 - 14. Определение размеров малых тел при помощи микроскопа.

Лабораторные работы выполняются в соответствии с Методическими указаниями по выполнению лабораторных работ по дисциплине "Физика", приведенными в приложении 4 к рабочей программе дисциплины.

3.5. Рубежный контроль

Рубежный контроль проводится в соответствии с рабочей программой дисциплины (модуля). Рубежный контроль проводится в письменной форме.

Вопросы рубежного контроля № 1

Вопросы, рассматриваемые на аудиторных занятиях

- 1. Материальная точка. Система отсчета. Абсолютно твердое тело.
- 2.Скорость средняя и мгновенная.
- 3. Путь при произвольной зависимости от времени.
- 4. Ускорение. Скорость и путь при равноускоренном движении.
- 5. Ускорение при движении тела с постоянной скоростью по окружности (вывод).
- 6.Тангенциальное и нормальное ускорение при движении по криволинейной траектории. Полное ускорение при криволинейном движении.
- 7. Угловая скорость. Направление вектора угловой скорости.
- 8. Период и частота вращения. Связь с угловой скоростью.
- 9.Угловое ускорение; связь с тангенциальным ускорением.
- 10. Первый закон Ньютона. Инерциальные и неинерциальные системы отсчета.
- 11. Второй закон Ньютона. Сила. Масса тела.
- 12. Третий закон Ньютона. Направление сил, действующих на тела.
- 13. Импульс тела. Выражение второго закона Ньютона через импульс.
- 14.Сила тяжести и вес тела.

- 15. Вес тела при движении с ускорением. Невесомость.
- 16.Сила трения. Сила упругости.
- 17. Механическая система. Силы внутренние и внешние. Закон сохранения импульса (момент количества движения) в замкнутой системе.
- 18. Центр масс системы. Скорость центра масс. Закон движения центра масс.
- 19. Работа и энергия. Мощность.
- 20. Потенциальное поле, консервативные и диссипативные силы.
- 21.Потенциальная энергия тела. Связь силы с потенциальной энергией для консервативных сил.
- 22. Полная механическая энергия. Закон сохранения и превращения энергии.
- 23. Абсолютно упругий и неупругий удар шаров.
- 24. Момент силы относительно оси. Плечо силы.
- 25. Момент импульса относительно оси. Связь с моментом силы.
- 26. Закон сохранения момента импульса.
- 27. Момент инерции материальной точки и системы материальных точек.
- 28. Момент инерции однородного цилиндра (вывод).
- 29. Теорема Штейнера.
- 30. Кинетическая энергия вращающегося тела (вывод).
- 31. Работа и мощность силы при вращении тела вокруг оси (вывод).
- 32.Основное уравнение динамики вращательного движения твердого тела (вывод).
- 33. Момент импульса при вращении тела вокруг оси. Закон сохранения момента импульса при вращении тела.
- 34. Уравнения движения твердого тела. Условие равновесия твердого тела.
- 35. Колебания; свободные и вынужденные колебания.
- 36. Гармонические колебания. Смещение, скорость и ускорение при гармонических колебаниях. Амплитуда колебаний. Период и частота колебаний.
- 37. Вывод дифференциального уравнения гармонических колебаний.
- 38.Математический маятник. Вывод дифференциального уравнения гармонических колебаний. Период колебаний маятника.
- 39.Пружинный маятник. Вывод дифференциального уравнения гармонических колебаний. Период колебаний маятника.
- 40. Энергия тела при гармонических колебаниях: кинетическая, потенциальная, полная.
- 41. Затухающие колебания. Дифференциальное уравнение колебаний. Смещение при затухающих колебаниях. Амплитуда и период затухающих колебаний.
- 42. Декремент затухания. Логарифмический декремент затухания затухающих колебаний.
- 43.Вынужденные колебания. Дифференциальное уравнение вынужденных колебаний. Из каких частей состоит решение этого уравнения; как они зависят от времени?
- 44. Явление резонанса, резонансная частота.
- 45. Волновой процесс (волны). Основное свойство всех волн.
- 46.Сплошная среда. Упругие волны. Гармонические упругие волны.
- 47. Длина волны, связь скорости волны с длиной волны и частотой.

- 48.Бегущие волны, вектор плотности потока энергии в волне (вектор Умова).
- 49.Общий вид уравнения плоской синусоидальной волны.
- 50. Волновое число. Уравнение бегущей сферической волны.
- 51. Когерентные волны. Принцип суперпозиции волн.
- 52.Интерференция двух волн.
- 53. Суперпозиция двух когерентных волн в точке (вывод).
- 54.Интерференция максимум и минимум при сложении двух когерентных волн.
- 55. Основные положения молекулярно-кинетической теории.
- 56.Основные понятия термодинамики.
- 57. Уравнение состояния тела (вещества).
- 58.Идеальный газ. Какой газ близок к идеальному?
- 59. Уравнение состояния идеального газа для данной массы газа (уравнение Менделеева Клапейрона).

Вопросы для самостоятельного изучения

- 1. Виды измерений.
- 2. Градиент физической величины.
- 3. Основы теории погрешностей.
- 4. Ускорение при произвольном движении.
- 5. Энтропия.
- 6. Холодильная машина. Обратный цикл Карно.

Вопросы рубежного контроля №2

Вопросы, рассматриваемые на аудиторных занятиях

- 1. Уравнение состояния идеального газа в виде зависимости давления от температуры и концентрации молекул.
- 2.Вывод основного уравнения молекулярно кинетической теории газов.
- 3. Средняя квадратичная скорость молекул.
- 4.Связь средней кинетической энергии поступательного движения молекул с температурой.
- 5. Средняя длина свободного пробега молекул. Эффективный диаметр молекул.
- 6. Явление диффузии. Масса, переносимая в процессе диффузии (закон Фика).
- 7. Внутреннее трение. Закон Ньютона для силы внутреннего трения. Ламинарное и турбулентное течения.
- 8. Внутренняя энергия термодинамической системы.
- 9. Число степеней свободы молекул. Закон Больцмана о равномерном распределении энергии по степеням свободы молекул.
- 10. Связь внутренней энергии вещества с числом степеней свободы.
- 11. Первое начало термодинамики.
- 12. Работа, совершаемая газом при изменении его объёма.
- 13. Теплоёмкость тела, молярная и удельная теплоёмкости.
- 14. Теплоёмкость газов: при постоянном объёме и при постоянном давлении; связь с числом степеням свободы

- 15. Адиабатический процесс. Показатель адиабаты, связь с числом степеней свободы.
- 16. Связь внутренней энергии газа с показателем адиабаты, температурой и давлением.
- 17. Уравнения адиабаты идеального газа (уравнение Пуассона).
- 18. Работа, совершаемая идеальным газом при различных процессах (изохорическом, изобарическом, изотермическом, адиабатическом).
- 19. Коэффициент полезного действия для кругового процесса.
- 20. Обратимый и необратимый термодинамические процессы (циклы).
- 21. Схема цикла работы теплового двигателя.
- 22. Схема цикла работы холодильной машины.
- 23. Второе начало термодинамики (о направлении перехода тепла).
- 24. Теорема Карно. Цикл Карно. КПД цикла Карно.
- 25. Приведённое количество теплоты. Энтропия.
- 26. Неравенство Клаузиуса для энтропии (для обратимых и необратимых процессов).
- 27. Принцип возрастания энтропии.
- 28. Физический смысл энтропии, формула Больцмана для энтропии.
- 29. Третье начало термодинамики (теорема Нернста).
- 30. Уравнение состояния реального газа (уравнение Ван-дер-Ваальса).
- 31. Закон Кулона. Направление силы, действующей на заряд.
- 32. Напряженность электрического поля.
- 33. Принцип суперпозиции электрических полей.
- 34. Силовые линии (линии напряженности) электрического поля. Полное число линий, входящих из точечного заряда.
- 35. Поток вектора напряженности электрического поля. Теорема Гаусса.
- 36. Применение теоремы Гаусса к расчету электрических полей: поле однородно заряженной плоскости; поле двух разноименно заряженных плоскостей; поле бесконечно заряженного цилиндра; поле заряженной сферической поверхности; поле объемно заряженной сферы.
- 37. Работа сил электрического поля по перемещению точечного заряда.
- 38. Циркуляция вектора напряженности по замкнутому контуру.
- 39. Потенциальная энергия точечного заряда в поле другого точечного заряда. Потенциал. Работа по перемещению заряда между точками с разными потенциалами.
- 40. Связь между напряженностью электрического поля и потенциалом. Связь разности потенциалов с напряженностью электрического поля.
- 41. Эквипотенциальные поверхности.
- 42. Поляризация диэлектрика в электрическом поле, вектор поляризуемости (вектор поляризации) диэлектрика.
- 43. Связь поляризованности с напряженностью электрического поля. Диэлектрическая восприимчивость среды, ее зависимость от температуры.
- 44. Электрическое поле в диэлектрике, напряженность электрического поля.
- 45. Поверхностная плотность связанных зарядов. Напряженность поля связанных зарядов в диэлектрике.

- 46. Диэлектрическая проницаемость среды, связь с диэлектрической восприимчивостью.
- 47. Вектор электрического смещения. Теорема Гаусса для вектора электрического смещения.
- 48. Эквипотенциальные поверхности вокруг проводника.
- 49. Проводник во внешнем электрическом поле. Индуцированные заряды.
- 50. Электроемкость уединенного проводника.
- 51. Конденсаторы. Емкость плоского конденсатора. Емкость при последовательном и параллельном соединениях конденсаторов.
- 52. Энергия заряженного конденсатора.

Вопросы для самостоятельного изучения

- 1. Третье начало термодинамики.
- 2. Понятие о вакууме.
- 3. Вихревые токи.
- 4. Ферромагнетики и гистерезис.
- 5. Трансформаторы.
- 6. Коэффициент мощности.

Вопросы рубежного контроля №3

Вопросы, рассматриваемые на аудиторных занятиях

- 1. Сила тока. Сила тока в случае движения положительных и отрицательных зарядов. Вектор плотности тока, связь с силой тока.
- 2. Закон Ома для участка цепи в интегральной и дифференциальной формах. Сопротивление цилиндрического проводника. Зависимость удельного сопротивления от температуры.
- 3. Сопротивление при последовательном и параллельном соединении проводников.
- 4. Электродвижущая сила. Падение напряжения на неоднородном участке цепи.
- 5. Закон Ома для неоднородного участка цепи в интегральной и дифференциальной формах.
- 6. Работа и мощность тока. Закон Джоуля–Ленца в интегральной и дифференциальной формах.
- 7. Мощность, развиваемая источником тока. Мощность, выделяемая в нагрузке. Коэффициент полезного действия источника тока.
- 8. Соотношение внутреннего сопротивления и сопротивления нагрузки при максимальной полезной мощности на нагрузке.

- 9. Магнитное поле. Магнитная индукция, принцип суперпозиции магнитных полей. Силовые линии магнитного поля.
 - 10. Закон Био- Савара- Лапласа.
 - 11. Магнитная индукция прямого проводника с током.
- 12. Сила Лоренца. Направление силы, действующей на положительный и отрицательный заряды.
 - 13. Закон Ампера. Физический смысл вектора магнитной индукции В.
- 14. Сила взаимодействия двух бесконечных прямых проводников с током. Правило левой руки.
- 15. Сила и механический момент, действующие на замкнутый контур с током в магнитном поле. Магнитный момент контура с током.
 - 16. Магнитная индукция в центре кругового контура с током.
 - 17. Магнитный поток.
- 18. Работа, совершаемая при перемещении проводника с током в магнитном поле.
 - 19. Поток вектора магнитной индукции через замкнутую поверхность.
 - 20. Теорема Гаусса для вектора магнитной индукции.
 - 21. Природа света.
 - 22. Основные законы геометрической оптики.
 - 23.Линзы.
 - 24. Глаз как оптическая система.
 - 25.Поглощение света 25.Интерференция света.
 - 26. Дифракция света.
 - 27. Дисперсия света.
 - 28. Законы теплового излучения.
 - 39. Фотоэффект.
 - 30. Строение атома. Теория Бора.
 - 31. Строение атомного ядра.

Вопросы для самостоятельного изучения

- 1. Аберрации.
- 2. Голография.
- 3. Распространение света в мутных средах.
- 4. Поляризуемость анизотропной молекулы.
- 5. Период полураспада.
- 6 Ядерный и термоядерный взрыв.
- 7. Нуклеосинтез.
- 8. Симметрии природы.
- 9. Фундаментальные частицы стандартной модели.
- 10. Адроны.
- 11. Излучение черного тела.
- 12. Волновые свойства частиц.

3.6. Промежуточная аттестация

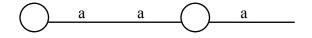
В соответствии с учебным планом по направлению подготовки 35.03.08 Водные биоресурсы и аквакультура установлена промежуточная аттестация в виде экзамена во втором семестре.

В экзаменационных билетах предполагается наличие ситуационных задач, которые предназначены для выявления способности обучающихся решать жизненные проблемы с помощью предметных знаний, которые относятся к понятию методических ресурсов. Они позволяют представить предметные и метапредметные результаты образования в комплексе умений и навыков, основанных на знаниях за счёт усвоения разных способов деятельности, методов работы с информацией. Решение ситуационной задачи предполагает мобилизацию имеющиеся у обучающихся знаний и опыта, полученных в ходе обучения — то есть быть компетентным, что отражает идеологию введения новых образовательных стандартов (ФГОС). Ситуационные задачи рассматриваются вместе с расчетом лабораторных работ и затем вносятся в экзаменационный билет.

Вопросы, выносимые на экзамен во 1-ом семестре

- 1. Материальная точка. Система отсчета. Абсолютно твердое тело.
- 2. Скорость средняя и мгновенная.
- 3. Путь при произвольной зависимости от времени.
- 4. Ускорение. Скорость и путь при равноускоренном движении.
- 5. Ускорение при движении тела с постоянной скоростью по окружности (вывод).
- 6. Угловая скорость. Направление вектора угловой скорости.
- 7. Период и частота вращения. Связь с угловой скоростью.
- 8.Угловое ускорение. Связь линейных и угловых величин при вращении тела (путь, скорость, ускорение).
- 9.Закон Ньютона.
- 10. Импульс тела. Выражение второго закона Ньютона через импульс.
- 11. Сила тяжести и вес тела. Сила трения. Сила упругости.
- 12. Механическая система. Силы внутренние и внешние. Закон сохранения импульса (момент количества движения) в замкнутой системе.
- 13. Центр масс системы. Скорость центра масс. Закон движения центра масс.
- 14. Работа и энергия. Мощность. Энергия.
- 15.Полная механическая энергия. Закон сохранения и превращения энергии.
- 16. Момент силы относительно оси. Плечо силы.
- 17. Момент импульса относительно оси. Связь с моментом силы.
- 18. Закон сохранения момента импульса.
- 19. Момент инерции материальной точки и системы материальных точек. Теорема Штейнера.
- 20. Кинетическая энергия вращающегося тела.
- 21. Основное уравнение динамики вращательного движения твердого тела.
- 22. Момент импульса при вращении тела вокруг оси. Закон сохранения момента импульса при вращении тела.

- 23. Гармонические колебания. Смещение, скорость и ускорение при гармонических колебаниях. Амплитуда колебаний. Период и частота колебаний. Уравнения гармонических колебаний.
- 24. Энергия тела при гармонических колебаниях: кинетическая, потенциальная, полная.
- 25. Затухающие колебания. Дифференциальное уравнение колебаний. Смещение при затухающих колебаниях. Амплитуда и период затухающих колебаний. Декремент затухания. Логарифмический декремент затухания затухающих колебаний.
- 26. Вынужденные колебания. Явление резонанса, резонансная частота.
- 27. Волновой процесс (волны). Основное свойство всех волн. Длина волны, связь скорости волны с длиной волны и частотой.
- 28. Волновое число. Уравнение бегущей сферической волны.
- 29. Основные положения молекулярно-кинетической теории.
- 30.Идеальный газ. Уравнение состояния идеального газа для данной массы газа (уравнение Менделеева Клапейрона).
- 31. Вывод основного уравнения молекулярно кинетической теории газов.
- 32. Средняя квадратичная скорость молекул. Связь средней кинетической энергии поступательного движения молекул с температурой.
- 33. Явления переноса. Закон теплопроводности Фурье. Закон Фика. Закон Ньютона для силы внутреннего трения.
- 34. Внутренняя энергия термодинамической системы.
- 35. Число степеней свободы молекул. Закон Больцмана о равномерном распределении энергии по степеням свободы молекул.
- 36. Первое начало термодинамики.
- 37. Работа, совершаемая газом при изменении его объёма.
- 38.Теплоёмкость газов: при постоянном объёме и при постоянном давлении; связь с числом степеней свободы. Связь молярных теплоёмкостей между собой.
- 39. Адиабатический процесс. Показатель адиабаты, связь с числом степеней свободы. Уравнение Пуассона
- 40.Связь внутренней энергии газа с показателем адиабаты, температурой и давлением.
- 41. Круговой процесс (цикл). Прямой и обратный цикл. Коэффициент полезного действия для кругового процесса. Обратимый и необратимый термодинамические процессы (циклы).
- 42.Схема цикла работы теплового двигателя.
- 43.Второе начало термодинамики (о направлении перехода тепла). Теорема Карно. Цикл Карно. КПД цикла Карно.
- 44. Приведённое количество теплоты. Энтропия. Принцип возрастания энтропии.
- 45. Закон Кулона. Направление силы, действующей на заряд.
- 46. Напряженность электрического поля.
- 47. Принцип суперпозиции электрических полей.
- 48. Поток вектора напряженности электрического поля. Теорема Гаусса.
- 49. Работа сил электрического поля по перемещению точечного заряда.
- 50. Циркуляция вектора напряженности по замкнутому контуру.51


- 51. Потенциальная энергия точечного заряда в поле другого точечного заряда. Потенциал. Работа по перемещению заряда между точками с разными потенциалами.
- 52. Связь между напряженностью электрического поля и потенциалом. Связь разности потенциалов с напряженностью электрического поля. Эквипотенциальные поверхности.
- 53. Электрическое поле в диэлектрике, напряженность электрического поля. Диэлектрическая проницаемость среды, связь с диэлектрической восприимчивостью.
- 54. Вектор электрического смещения. Теорема Гаусса для вектора электрического смещения.
- 55. Электроемкость уединенного проводника. Емкость шара.
- 56. Конденсаторы. Емкость плоского конденсатора. Емкость при последовательном и параллельном соединениях конденсаторов.
- 57. Энергия системы точечных зарядов. Энергия заряженного конденсатора. Энергия и плотность энергии электрического поля.
- 58. Сила тока. Вектор плотности тока, связь с силой тока.
- 59. Закон Ома для участка цепи в интегральной и дифференциальной формах. Сопротивление цилиндрического проводника. Зависимость удельного сопротивления от температуры.
- 60. Электродвижущая сила. Падение напряжения на неоднородном участке цепи. Закон Ома для неоднородного участка цепи в интегральной и дифференциальной формах.
- 61. Работа и мощность тока. Закон Джоуля—Ленца в интегральной и дифференциальной формах.
- 62. Мощность, развиваемая источником тока. Мощность, выделяемая в нагрузке. Коэффициент полезного действия источника тока.
- 63. Магнитное поле. Магнитная индукция, принцип суперпозиции магнитных полей. Силовые линии магнитного поля. Закон Био- Савара- Лапласа.
- 64. Сила Лоренца. Закон Ампера. Сила взаимодействия двух бесконечных прямых проводников с током.
- 65. Магнитный поток.
- 66. Поток вектора магнитной индукции через замкнутую поверхность. Теорема Гаусса для вектора магнитной индукции.
- 67. Циркуляция вектора магнитной индукции В по замкнутому контуру для прямого тока (вывод).
- 68. Закон полного тока для вектора магнитной индукции В и для напряженности магнитного поля Н.
- 69. Магнитная проницаемость μ , ее физический смысл.
- 70. Виды магнетиков. Диамагнетики. Парамагнетики. Ферромагнетики. Петля гистерезиса.
- 71. Электромагнитная индукция. Индукционный ток. Правило Ленца.
- 72. Самоиндукция. Индуктивность. Индуктивность соленоида. ЭДС самоиндукции.
- 73. Энергия магнитного поля. Плотность энергии магнитного поля.

- 74. Система уравнений Максвелла для электромагнитного поля.
- 75. Электромагнитные волны.
- 76. Природа света.
- 77. Основные законы геометрической оптики.
- 78. Физическое объяснение явления.
- 79. Линзы.
- 80. Принцип Гюйгенса Френеля.
- 81. Глаз как оптическая система. Аккомодация.
- 82.Основные фотометрические характеристики, световые величины в фотометрии.
- 83. Поглощение света.
- 84. Интерференция света Дифракция света.
- 85. Принцип Гюйгенса Френеля
- 86. Экспериментальное обнаружение волн де Бройля.
- 87. Поляризация света.
- 88. Виды оптических излучений. Квантовый характер излучения.
- 89. Спектры. Спектральный анализ.
- 90. Люминесценция твердых тел. Фотолюминесценция. Правило Стокса.
- 91. Фотоэффект. Взаимодействие электромагнитного излучения с веществом, в результате которого энергия излучения передается электронам вещества.
- 92. Естественная радиоактивность.
- 93. Состав и строение атомных ядер.
- 94. Методы регистрации элементарных частиц и радиоактивных излучений.
- 95. Энергия связи.
- 96. Элементарные частицы.

Ситуационные задачи

- 1. Баллон емкостью 12 л наполнен азотом при давлении 8,1 МПа и температуре 17^{0} С. Какое количество азота находится в баллоне?
- 2. Расстояние между точечными зарядами 8 нКл и 4 нКл равно 40 см. Вычислить напряженность электростатического поля в точке, лежащей посередине между зарядами.
- 3. Плотность некоторого газа равна 6.10-2 кг/м3, средняя квадратичная скорость молекул этого газа равна 500 м/с. Найти давление, которое газ оказывает на стенки сосуда.
- 4. Чему равна энергия вращательного движения молекул, содержащихся в 1 кг азота при температуре $7 \, ^{0}\text{C}$?
- 5. Какое количество теплоты надо сообщить 12 г кислорода, чтобы нагреть его на 50 $\,^{0}$ C при постоянном давлении?
- 6. В закрытом сосуде объемом 10 л находится воздух при давлении 0,1 МПа. Какое количество теплоты надо сообщить воздуху, чтобы повысить давление в сосуде в 5 раз?

- 7. При изотермическом расширении 10 г азота, находящегося при температуре 17 0С, была совершена работа 860 Дж. Во сколько раз изменилось давление азота при расширении?
- 8. При адиабатическом сжатии 1 кмоля двухатомного газа была совершена работа 146 кДж. На сколько увеличилась температура газа при сжатии?
- 9. Идеальная тепловая машина работает по циклу Карно. При этом 80% тепла, получаемого от нагревателя, передается холодильнику. Количество теплоты, получаемое от нагревателя, равно 6 кДж. Найти к.п.д. цикла.
- 10. Идеальная тепловая машина работает по циклу Карно. Определить к.п.д. цикла, если известно, что за один цикл была произведена работа 3 кДж и холодильнику было передано 12 кДж.
- 11. Расстояние между точечными зарядами 8 нКл и 4 нКл равно 40 см. Вычислить напряженность электростатического поля в точке, лежащей посередине между зарядами.
- 12. Написать уравнение гармонического колебательного движения с амплитудой 5 см, если в 1 мин совершается 150 колебаний и начальная фаза колебаний равна 450.
- 13.По двум бесконечно длинным прямым проводникам, скрещенным под прямым углом, текут токи силой 30 A и 40 A. Определить магнитную индукцию в точке, удаленной то обоих проводников на 10 см.
- 14. Через сколько времени от начала движения точка, совершающая гармоническое колебание, сместится от положения равновесия на половину амплитуды?
- 15. Уравнение движения точки дано в виде $x = 2\sin(\frac{\pi}{2}t + \frac{\pi}{4})$ см. Найти период колебаний и максимальную скорость точки.
- 16. Электрическое поле создано двумя бесконечными параллельными пластинами, несущими равномерно распределенный по площади заряд с поверхностной плотностью 1 нКл/м² и -3 нКл/м². Определить напряженность поля между и вне пластин и начертить картину силовых линий.
- 17. Медный шарик, подвешенный к пружине, совершает вертикальные колебания. Как изменится период колебаний, если к пружине подвесить вместо медного шарика алюминиевый такого же радиуса?
- 18. Напряженность поля на расстоянии 30 см от точечного электрического заряда равна 9 В/м. Чему равна напряженность поля на расстоянии 10 см от заряда?
- 19. Электрическое поле создано двумя одинаковыми положительными точечными зарядами. Потенциал точки 1, лежащей между ними равен 300 В. Найти потенциал точки 2.

- 20.Подсчитать работу по сближению двух точечных зарядов 10 нКл и 16 нКл, находящихся на расстоянии 50 см, до расстояния 20 см.
- 21.По бесконечно длинному прямому проводу, согнутому под углом 120о, течет ток силой 20 А. Найти напряженность магнитного поля в точке, лежащей на биссектрисе угла на расстоянии 2 см от его вершины.
- 22.В металлическом проводнике с током 32 мкА через поперечное сечение проводника проходит 2 □ 105 электронов. За какое время это происходит?
- 23. Если батарея, замкнутая на сопротивление 5 Ом, дает ток в цепи 5 А, а замкнутая на сопротивление 2 Ом, дает ток 8 А, то чему равна ЭДС батареи.
- 24.Первую половину времени своего движения автомобиль двигался со скоростью 80 км/ч, а вторую половину времени со скоростью 40 км/ч. Какова средняя скорость движения автомобиля?
- 25.Первую половину своего пути автомобиль двигался со скоростью 80 км/ч, а вторую половину пути со скоростью 40 км/ч. Какова средняя скорость движения автомобиля?
- 26.Зависимость пройденного телом пути s от времени t дается уравнением s=A+Bt+Ct2+Dt3, где C=0,14 м/c2 и D=0,01 м/c3. Через сколько времени после начала движения ускорение тела будет равно 1 м/c2?
- 27. Масса лифта с пассажирами равна 800 кг. Найти, с каким ускорением и в каком направлении движется лифт, если известно, что натяжение троса, поддерживающего лифт, равно 1,2.104 Н.
- 28.Из ружья массой 5 кг вылетает пуля массой 5.10-3 кг со скоростью 600 м/с. Найти скорость отдачи ружья.
- 29. Диск массой 2 кг катится без скольжения по горизонтальной плоскости со скоростью 4 м/с. Найти кинетическую энергию диска.
- 30.Найти работу, которую надо совершить, чтобы увеличить скорость движения тела от 2 до 6 м/с на пути 10 м. На всем пути действует постоянная сила трения 2 Н. Масса тела 1 кг.

Образец экзаменационного билета.

МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего образования

«Саратовский государственный аграрный университет имени Н. И. Вавилова» Кафедра: Инженерная физика, электрооборудование и электротехнологии Дисциплина: Физика.

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № __1

- 1. Теорема Остроградского-Гаусса для электрического поля в вакууме. Напряженность поля сферы и шара.
- 2. Закон Ампера. Сила взаимодействия двух прямолинейных проводников с током

3.	Элемент, ЭДС которого Е и внутреннее сопротивление г, за	імкнут н	а вне	шнее
	сопротивление R. Наибольшая мощность во внешней цепи	равна 9	Э Вт.	Сила
	тока при этом равна 3 А. Найти Е и г.			
3a	ав. кафедрой	B.A. T	рушк	шН

4. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций

4.1. Процедуры оценивания знаний, умений, навыков и(или) опыта деятельности

Контроль результатов обучения, этапов и уровня формирования компетенций по дисциплине «Физика» осуществляется через проведение входного, текущего, рубежных, выходного контролей и контроля самостоятельной работы.

Формы текущего, промежуточного и итогового контроля и контрольные задания для текущего контроля разрабатываются кафедрой исходя из специфики дисциплины, и утверждаются на заседании кафедры.

4.2. Критерии оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы

Описание шкалы оценивания достижения компетенций по дисциплине приведено в таблице 6.

Уровень освоения компетенци и		о пятибалльной системе уточная аттестация)*		Описание
высокий	«ОТЛИЧНО»	«зачтено»	«зачтено (отлично) »	Обучающийся обнаружил всестороннее, систематическое и глубокое знание учебного материала, умеет свободно выполнять задания, предусмотренные программой, усвоил основную литературу и знаком с дополнительной литературой, рекомендованной программой. Как правило, обучающийся проявляет творческие способности в понимании, изложении и использовании материала
базовый	«хорошо»	«зачтено»	«зачтено (хорошо) »	Обучающийся обнаружил полное знание учебного материала, успешно выполняет предусмотренные в программе задания, усвоил основную литературу, рекомендованную в программе

Уровень	Отметка по	пятибалльн	ой системе	Описание
освоения	(промежуточная аттестация)*		стация)*	
компетенци				
И				
пороговый	«удовлетвори	«зачтено»	«зачтено	Обучающийся обнаружил знания
	тельно»		(удовлетв	основного учебного материала в объеме,
			орительно	необходимом для дальнейшей учебы и
)»	предстоящей работы по профессии,
				справляется с выполнением
				практических заданий, предусмотренных
				программой, знаком с основной
				литературой, рекомендованной
				программой, допустил погрешности в
				ответе на экзамене и при выполнении
				экзаменационных заданий, но обладает
				необходимыми знаниями для их
				устранения под руководством
				преподавателя
_	«неудов-	«не	«не зачтено	1 1 1
	летвори-	зачтено»	(неудовлет-	-
	тельно»		ворительно)	· ·
			»	выполнении предусмотренных
				программой практических заданий, не
				может продолжить обучение или
				приступить к профессиональной
				деятельности по окончании
				образовательной организации без
				дополнительных занятий

4.2.1. Критерии оценки устного ответа при собеседовании

В процессе собеседования обучающийся демонстрирует:

знания: материала, изученного по рассматриваемой теме, а также других вопросов, логически связанных с данной темой.

умения: сформированное умение работать с изученной информацией, принимать правильные решения в рамках рассматриваемой темы, предлагать оптимальные варианты решения поставленных задач.

владение навыками: решения профессиональных задач в рамках рассматриваемой тематики.

Критерии оценки

Отлично	обучающийся демонстрирует:
	- знание материала рассматриваемой темы, практики применения
	материала, исчерпывающе и последовательно, четко и логично
	излагает материал, хорошо ориентируется в материале, не
	затрудняется с ответом при видоизменении заданий;
	- умение работать с изученной информацией в рамках
	рассматриваемой темы, предлагать оптимальные варианты
	решения поставленных задач;
	- успешное и системное владение навыками работы с
	информацией, а также навыки рационального решения

	профессиональных задач в рамках рассматриваемой тематики.
Хорошо	обучающийся демонстрирует:
1	- знание материала, не допускает существенных неточностей;
	- в целом успешное, но содержащие отдельные пробелы, умение
	работать с изученной информацией в рамках рассматриваемой
	темы и предлагать варианты решения поставленных задач;
	- в целом успешное, но содержащее отдельные пробелы или
	сопровождающееся отдельными ошибками владение навыками
	работы с информацией и решения профессиональных задач в
	рамках рассматриваемой тематики.
Удовлетворительно	обучающийся демонстрирует:
-	- знания только основного материала, но не знает деталей,
	допускает неточности, допускает неточности в формулировках,
	нарушает логическую последовательность в изложении
	материала;
	- в целом успешное, но не системное умение работать с
	изученной информацией в рамках рассматриваемой темы и
	предлагать варианты решения поставленных задач;
	- в целом успешное, но не системное владение навыками работы
	с информацией и решения профессиональных задач в рамках
	рассматриваемой тематики.
Неудовлетворительно	обучающийся:
	- не знает значительной части программного материала, плохо
	ориентируется в рассматриваемой тематике, не знает практику
	применения изученного материала, допускает существенные
	ошибки;
	- не умеет работать с изученной информацией в рамках
	рассматриваемой темы, предлагать варианты решения
	поставленных задач, допускает существенные ошибки,
	неуверенно, с большими затруднениями отвечает или не
	отвечает совсем на заданные вопросы;
	- обучающийся не владеет навыками работы с информацией, а
	также навыками решения профессиональных задач в рамках
	рассматриваемой тематики.

4.2.2. Критерии оценки устного ответа при промежуточной аттестации

При ответе на вопрос обучающийся демонстрирует:

знания: основных законов и явлений физики, физических соотношений, описывающих данные явления, знает практические примеры применения указанных явлений в технике и технологии.

умения: проводить физические эксперименты и последующий расчет параметров физических процессов с использованием современных методов и средств обработки экспериментальных результатов и расчета погрешностей.

владение навыками: проведения физического эксперимента и последующего расчета параметров физических процессов с использованием современных методов и средств обработки экспериментальных результатов и расчета погрешностей.

Критерии оценки устного ответа

	критерии оценки устного ответа
отлично	обучающийся демонстрирует:
	- знание материала, в т.ч. основных законов и явлений физики,
	практики применения этих законов, исчерпывающе и
	последовательно, четко и логично излагает материал, хорошо в нем
	ориентируется, не затрудняется с ответом при изменений условий
	задания.
	- умение проводить физические эксперименты и последующий
	расчет параметров физических процессов с использованием
	современных методов и средств обработки экспериментальных
	результатов и расчета погрешностей.
	- успешное и системное владение навыками проведения физического
	эксперимента и последующего расчета параметров физических
	процессов с использованием современных методов и средств
	обработки экспериментальных результатов и расчета
	погрешностей.
хорошо	обучающийся демонстрирует:
_	- знание материала, не допускает существенных неточностей;
	- в целом успешное, но содержащее отдельные пробелы, умение
	проводить физические эксперименты и последующий расчет
	параметров физических процессов, а также обработку
	экспериментальных результатов и расчет погрешностей;
	- в целом успешное, но содержащее отдельные ошибки владение
	навыками проведения физического эксперимента и последующего
	расчета параметров физических процессов с использованием
	современных методов и средств обработки экспериментальных
	результатов и расчета погрешностей.
удовлетворительно	обучающийся демонстрирует:
	- знание только основного материала, но не знает деталей, допускает
	неточности в формулировках основных физических законов и
	явлений, нарушает логическую последовательность в изложении
	программного материала;
	- в целом успешное, но не системное умение проведения физических
	экспериментов и последующего расчета параметров физических
	процессов, а также обработку экспериментальных результатов и
	расчет погрешностей;
	- в целом успешное, но не системное владение навыками проведения
	физического эксперимента и последующего расчета параметров
	физических процессов с использованием современных методов и
	средств обработки экспериментальных результатов и расчета
	погрешностей.
неудовлетворительно	обучающийся:
-Ja	- не знает значительной части программного материала, плохо
	ориентируется в физических явлениях и законах, не знает практику
	их применения, допускает при этом существенные ошибки;
	- не умеет использовать методы и приемы физических
	исследований, допускает при этом существенные ошибки,
	неуверенно, с большими затруднениями выполняет
	самостоятельную работу, большинство заданий, предусмотренных
	программой, не выполнено;
	- обучающийся не владеет навыками постановки и проведения
	физических экспериментов и последующего расчета параметров

физических процессов, допускает при этом существенные ошибки,
не умеет рассчитывать погрешности полученных значений,
большинство заданий, предусмотренных программой дисциплины,
не выполнено.

4.2.3. Критерии оценки реферата (доклада)

При написании реферата (доклада) обучающийся демонстрирует:

знания: источников литературы (учебников, монографий, периодической литературы), относящейся к теме реферата, при этом знания не ограничиваются только темой самого реферата, но и связаны с тем научным направлением, к которому относится данная тема;

умения: работать с учебной и научной литературой, находить в литературе ответы на поставленные вопросы, грамотного, логичного, обоснованного и компактного изложения мнения авторов и своих суждений по выбранной теме в письменной форме научным грамотным языком и в хорошем стиле;

владение навыками: логичного, обоснованного и компактного изложения мнения авторов, а также своего мнения по выбранному вопросу, навыки библиографического поиска необходимой литературы грамотного оформления ссылок на используемые источники, правильного цитирования авторского текста, навыки публичного выступления перед аудиторией

Критерии оценки реферата

отлично	обучающийся демонстрирует:
	- знание материала, в т.ч. источников литературы (учебников,
	монографий, периодической литературы), относящейся к теме
	реферата, при этом знания не ограничиваются только темой самого
	реферата, но и связаны с тем научным направлением, к которому относится данная тема.
	- умение работать с учебной и научной литературой, находить в
	литературе ответы на поставленные вопросы, грамотного, логичного,
	обоснованного и компактного изложения мнения авторов и своих
	суждений по выбранной теме в письменной форме научным
	грамотным языком и в хорошем стиле.
	- владение навыками логичного, обоснованного и компактного
	изложения мнения авторов, а также своего мнения по выбранному
	вопросу, навыки библиографического поиска необходимой
	литературы грамотного оформления ссылок на используемые
	источники, правильного цитирования авторского текста, навыки
	публичного выступления перед аудиторией.
хорошо	обучающийся демонстрирует:
	- знание материала темы реферата, не допускает существенных
	неточностей, при этом присутствуют несущественные погрешности,
	знание может ограничиваться только темой реферата;
	- в целом успешное, но содержащее отдельные пробелы, умение
	работать с учебной и научной литературой, находить в литературе
	ответы на поставленные вопросы, грамотного, логичного,
	обоснованного и компактного изложения мнения авторов и своих

	суждений по выбранной теме в письменной форме научным
	грамотным языком и в хорошем стиле;
	- в целом успешное, но содержащее отдельные погрешности владение
	навыками логичного, обоснованного и компактного изложения
	мнения авторов, а также своего мнения по выбранному вопросу,
	библиографического поиска необходимой литературы грамотного
	оформления ссылок на используемые источники, правильного
	цитирования авторского текста, навыки публичного выступления
	перед аудиторией.
удовлетворитель	обучающийся демонстрирует:
но	- неполное знание материала темы реферата, допускает существенные
	неточности при этом;
	- недостаточное умение работать с учебной и научной литературой,
	находить в литературе ответы на поставленные вопросы, неумение
	грамотно, логично и обоснованно изложить мнения авторов и своих
	суждений по выбранной теме в письменной форме научным
	грамотным языком и в хорошем стиле;
	- недостаточное владение навыками логичного, обоснованного и
	компактного изложения мнения авторов, а также своего мнения по
	выбранному вопросу, библиографического поиска необходимой
	литературы грамотного оформления ссылок на используемые
	источники, правильного цитирования авторского текста,
	недостаточные навыки публичного выступления перед аудиторией.
неудовлетворите	обучающийся демонстрирует:
льно	- отсутствие знаний материала темы реферата;
	- неумение работать с учебной и научной литературой, находить в
	литературе ответы на поставленные вопросы, неумение грамотно,
	логично и обоснованно изложить мнения авторов и своих суждений
	по выбранной теме в письменной форме научным грамотным языком
	и в хорошем стиле;
	- не владение навыками логичного, обоснованного и компактного
	изложения мнения авторов, а также своего мнения по выбранному
	вопросу, библиографического поиска необходимой литературы
	грамотного оформления ссылок на используемые источники,
	правильного цитирования авторского текста, отсутствуют навыки
	публичного выступления перед аудиторией.

4.2.4. Критерии оценки лабораторной работы

При выполнении лабораторных работ обучающийся демонстрирует: знания: теории раздела физики, которому соответствует данная работа умения: грамотно провести эксперимент и снять показания с приборов владение навыками: расчетов экспериментальных данных, апробации результатов эксперимента.


Критерии оценки выполнения лабораторных работ

отлично	Правильное оформление работы. Соблюдён порядок выполнения	
	работы. Все результаты измерений записаны верно и с учётом	
	погрешности. Проведены правильные расчёты с учётом	
	погрешностей. Учтены размерности величин. Все результаты	

	измерений и вычислений занесены в таблицу с соблюдением обозначений и размерности величин. В итоге сделан вывод, соответствующий цели работы.
хорошо	С неточностями оформлена работа. Частично правильно соблюдён порядок выполнения работы. Результаты измерений записаны верно, но без учёта погрешностей. Не учтены размерности величин. Результаты измерений и вычислений частично занесены в таблицу. В итоге сделан вывод, не полностью соответствующий цели работы.
удовлетворительно	Не верно оформлена работа. Не совсем верно соблюдён порядок выполнения работы. Результаты измерений записаны верно, но без учёта погрешностей. Не учтены размерности величин. Результаты измерений и вычислений частично занесены в таблицу. В итоге сделан вывод, не полностью соответствующий цели работы.
неудовлетворительно	Не верно оформлена работа. Не соблюдён порядок выполнения работы. Результаты измерений записаны не верно, без учёта погрешностей. Не учтены размерности величин. Результаты измерений и вычислений не занесены в таблицу. В итоге сделан вывод, не соответствующий цели работы.

Разработчик:

доцент Четвериков Е.А.

