Документ подписан простой электронной подписью
Информаци то владельце:
ФИО: Солов ве Дмитрий Александрович
Должность: ректор ФИИНИСЕЛЕРСТВОЕСЕЛЬ СКОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ
Дата подпитания: 13.10
Ответь ректор ФИНИЦИЕЛЕРСТВОЕСЕЛЬ СКОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ
Дата подпитания: 13.10
Ответь ректор ФИНИЦИЕЛЕРСТВОЕСЕЛЬ СКОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ

Дата подпитания: 13.10
Ответь ректор ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение

528682d78 671e56

Высшего образования
«Саратовский государственный университет
генетики, биотехнологии и инженерии имени Н.И. Вавилова»

СОГЛАСОВАНО

УТВЕРЖДАЮ

И о заведующего кафедрой

 $_/$ Ключиков А.В./

« <u>12</u> » <u>апреля</u> 2024 г.

Декан факультета

/ Шишурин С.А./

« 12' » апреля 2024 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Дисциплина Автоматизация технологических процессов

сборки (DevOps)

Направление подготовки 09.04.03 Прикладная информатика

Направленность (профиль) Проектирование информационных систем

Квалификация

выпускника Магистр

Нормативный срок

обучения

2 года

Форма обучения

Очная

Разработчики: доцент Розанов А.В.

(подпись)

доцент Гончаров Р.Д.

(подпись)

Саратов 2024

1. Цель освоения дисциплины

Целью освоения дисциплины является формирование у обучающихся компетенций в соответствии с ФГОС ВО в предметной области дисциплин, связанных с автоматизацией технологических процессов сборки (DevOps): Обучить студентов методам и инструментам автоматизации процессов разработки, сборки, тестирования и развертывания программного обеспечения с целью повышения эффективности жизненного цикла разработки, обеспечения непрерывной интеграции и поставки, а также минимизации времени вывода продукта на рынок.

2. Место дисциплины в структуре ОПОП ВО

В соответствии с учебным планом по направлению подготовки 09.04.03 Прикладная информатика «Автоматизация технологических процессов сборки (DevOps)» относится к обязательной части блока один, формируемой участниками образовательных отношений.

Для изучения данной дисциплины необходимы знания, умения и навыки, формируемые дисциплиной «Системы поддержки принятия решений и рекомендательные системы».

3. Перечень планируемых результатов обучения по дисциплине, соотнесенных с индикаторами достижениями компетенций

Изучение данной дисциплины направлено на формирование у обучающихся компетенций, представленных в табл. 1

Таблица 1 Требования к результатам освоения дисциплины

$N_{\underline{0}}$	Код	Содержание компетенции	Индикаторы достижения	В результате изучения учебной дисциплины обучающиеся должны:		
Π/Π	компетенции	(или ее части)	компетенций	знать	уметь	владеть
1	2	3	4	5	6	7
1.	ОПК-5	ОПК-5 Способен	ОПК-5.3. Знает методологию	Основные принципы и	Настраивать и	Методами
		разрабатывать и	автоматизации	методологии DevOps,	использовать	проектирования и
		модернизировать	технологических процессов	включая непрерывную	инструменты для	поддержки CI/CD-
		программное и аппаратное	сборки, настройки и	интеграцию (CI),	автоматизации	цепочек для
		обеспечение	развёртывания	непрерывную поставку	сборки, тестирования	различных типов
		информационных и	программного обеспечения	(CD) и автоматизацию	и развертывания	проектов.
		автоматизированных		процессов.	программного	Практиками
		систем		Современные	обеспечения.	управления
				инструменты и	Проектировать и	инфраструктурой в
				технологии, используемые	внедрять pipelines	облачных и
				в DevOps, такие как	непрерывной	гибридных средах.
				Jenkins, GitLab CI/CD,	интеграции и	Навыками анализа и
				Docker, Kubernetes,	поставки (CI/CD).	интерпретации
				Terraform, Ansible и	Управлять	данных
				другие.	инфраструктурой с	мониторинга и
				Подходы к управлению	использованием	логирования для
				инфраструктурой как код	подходов	улучшения
				(Infrastructure as Code) и	Infrastructure as Code.	производительности
				облачными решениями.	Анализировать и	систем.
				Методы мониторинга,	оптимизировать	Подходами к
				логирования и анализа	процессы разработки	внедрению
				производительности	и эксплуатации для	культуры DevOps и
				систем.	повышения	Agile-практик в
					эффективности и	командах
					надежности систем.	разработки и
						эксплуатации.

4. Объём, структура и содержание дисциплины «Автоматизация технологических процессов сборки (DevOps)»

Общая трудоемкость дисциплины составляет 4 зачетные единицы, 144 часов.

Таблица 2 Объем дисциплины «Автоматизация технологических процессов сборки (DevOps)»

		Количество часов						
	D	в т.ч. по семестрам						
	Всего	1	2	3	4			
Контактная работа — всего, в т.ч.	54,1			54,1				
аудиторная работа:								
лекции	18			18				
лабораторные	36			36				
практические								
промежуточная аттестация	0.1			0.1				
контроль								
Самостоятельная работа	89,9			89,9				
Форма итогового контроля	3			3				
Курсовой проект (работа)	-			-				

Таблица 3 Структура и содержание дисциплины «Автоматизация технологических процессов сборки (DevOps)»

		Неделя семестра	Контактная работа			Самос- тоятель- ная работа	Конт	гроль
№ п/п	10		Вид занятия	Форма проведения	Количество часов	Количество часов	Вид	Форма
1	2	3	4	5	6	7	8	9
	3 семестр							
1.	Введение в DevOps и Docker	1	Л	T	2	5	TK	УО
2.	Введение в DevOps и Docker	2	ЛЗ	M	4	5	ВК	УО
3.	Работа с Docker	3	Л	T	3	5	ТК	УО, ПО
4.	Работа с Docker	4	ЛЗ	В	4	4	ТК	УО
5.	Введение в Kubernetes (k8s)	5	Л	В	2	4	ТК	УО, КЛ
6.	Введение в Kubernetes (k8s)	6	ЛЗ	M	3	5	ТK	УО
7.	Работа с Kubernetes	7	Л	В	3	5	ТК	УО
8.	Работа с Kubernetes	8	ЛЗ	T	2	6	РК	УО
9.	Автоматизация с помощью Python	9	Л	Т	2	6	ТК	УО, ПО

1	2	3	4	5	6	7	8	9
10.	Автоматизация с помощью Python	10	ЛЗ	M	2	6	TK	УО
11.	Введение в CI/CD	11	Л	Т	3	6	ТК	УО, КЛ
12.	Введение в СІ/СД	12	ЛЗ	П	2	6	ТК	УО
13.	GitLab, Gitea и DevOps	13	Л	В	4	6	ТК	УО
14.	GitLab, Gitea и DevOps	14	ЛЗ	M	2	6	РК	УО, ПО
15.	Облачные технологии (Yandex Cloud, AWS, Google Cloud, Azure)	15	Л	В	4	4,9	ТК	УО
16.	Облачные технологии (Yandex Cloud, AWS, Google Cloud, Azure)	16	ЛЗ	Т	4	4	ТК	УО
17.	Оркестраторы	17	Л	В	4	4	ТК	УО
18.	Оркестраторы	18	ЛЗ	T	2	4	ТК	УО
19.	Оркестраторы	19	ЛЗ	Т	2	2	ТК	УО
20.	Выходной контроль				0.1		Вых К	3
Ито	Итого:				54.1	89.9		

Примечание:

Условные обозначения:

Виды аудиторной работы: Л – лекция, ЛЗ – лабораторное занятие.

Формы проведения занятий: B — лекция-визуализация, T — лекция/занятие, проводимое в традиционной форме, M — моделирование.

Виды контроля: ВК - входной контроль, ТК - текущий контроль, РК - рубежный контроль, ВыхК - выходной контроль.

Форма контроля: УО – устный опрос, ПО – письменный опрос, Т – тестирование, КЛ – конспект лекции, З – зачет, ТР – творческая работа.

5. Образовательные технологии

Организация занятий по дисциплине «Автоматизация технологических процессов сборки (DevOps)» проводится по видам учебной работы: лекции, лабораторные, текущий контроль.

Реализация компетентностного подхода в рамках направления подготовки 09.04.03 Прикладная информатика предусматривает использование в учебном процессе активных и интерактивных форм проведения занятий в сочетании с внеаудиторной работой для формирования и развития профессиональных навыков обучающихся.

Лекционные занятия проводится в поточной аудитории с применением мультимедийного проектора в виде учебной презентации. Основные моменты лекционных занятий конспектируются.

Моделирование – это вид занятия, на котором новое знание вводится через построение модели вопроса, задачи или ситуации. При этом процесс познания приближается к исследовательской деятельности через диалог с преподавателем. Основной целью моделирования является углубление теоретических знаний обучающихся ПО теме через раскрытие научных подходов, теоретического формирование познавательного мышления, интереса содержанию дисциплины и профессиональной мотивации будущего специалиста.

Метод моделирования в наибольшей степени соответствует задачам высшего образования. Он способствует разделению сложного процесса

моделирования на составные части, что позволяет лучше усваивать материал. Реализуется объяснительно-иллюстративный характер обучения.

Целью лабораторных занятий является выработка практических навыков работы с обследованием организаций, выявлением информационных потребностей пользователей, формированием требований к информационной системе.

Самостоятельная работа охватывает проработку обучающимися отдельных вопросов теоретического курса, выполнение домашних работ, включающих решение задач, анализ конкретных ситуаций и подготовку их презентаций, и т.п. Самостоятельная работа осуществляется в индивидуальном формате и выполняется обучающимися на основе учебно-методических материалов дисциплины (приложение 2).

6. Учебно-методическое и информационное обеспечение дисциплины а) основная литература (библиотека ФГБОУ ВО Вавиловский

университет)

J	sepenter)			
№ п/п	Наименование, ссылка для электронного доступа или кол-во экземпляров в библиотеке	Автор(ы)	Место издания, издательство, год	Используется при изучении разделов (из п. 4, таб. 3)
1	2	3	4	5
1.	Цифровая трансформация: Agile и Digital: учебное пособие для вузов URL: https://e.lanbook.com/book/422549	А. Н. Баланов.	Санкт-Петербург : Лань, 2024	все разделы
2.	Архитектура, проектирование и разработка программных средств : учебное пособие URL: https://e.lanbook.com/book/386189	А. Н. Алпатов, И. Е. Рогов	Москва : РТУ МИРЭА, 2023.	все разделы

б) дополнительная литература

№ п/п	Наименование, ссылка для электронного доступа или кол-во экземпляров в библиотеке	Автор(ы)	Место издания, издательство, год	Используется при изучении разделов (из п. 4.3)
1	2	3	4	5
1.	Внедрение методологий в IT: Agile, Scrum и другие : учебное пособие для вузов URL: https://e.lanbook.com/book/401123	А. Н. Баланов.	Санкт- Петербург : Лань, 2024.	все разделы
2.	Баланов, А. Н. Цифровые продукты. Product Owner: учебник для вузов URL: https://e.lanbook.com/book/417785	А. Н. Баланов.	Санкт-Петербург : Лань, 2024.	все разделы

в) ресурсы информационно-телекоммуникационной сети «Интернет»

Для освоения дисциплины рекомендуются следующие сайты информационно-телекоммуникационной сети «Интернет»:

- официальный сайт университета: https://www.vavilovsar.ru;

– крупнейший веб-сервис для хостинга IT-проектов и их совместной разработки: https://github.com/

г) периодические издания

Не предусмотрены дисциплиной.

д) информационные справочные системы и профессиональные базы данных

Для пользования стандартами и нормативными документами рекомендуется применять информационные справочные системы и профессиональные базы данных, доступ к которым организован библиотекой университета через локальную вычислительную сеть.

Для пользования электронными изданиями рекомендуется использовать следующие информационные справочные системы и профессиональные базы данных:

1. Научная библиотека университета https://www.vavilovsar.ru/biblioteka

Базы данных содержат сведения о всех видах литературы, поступающей в фонд библиотеки. Более 1400 полнотекстовых документов (учебники, учебные пособия и т.п.) (доступ: с любого компьютера, подключенного к сети Internet).

2. Электронная библиотечная система «Лань» https://e.lanbook.com Электронная библиотека издательства «Лань» — ресурс, включающий в себя как электронные версии книг издательства «Лань», так и коллекции полнотекстовых файлов других российских издательств (доступ: после регистрации с компьютера университета с любого компьютера, подключенного к сети Internet).

3. 3 FC IPR SMART http://iprbookshop.ru

ЭБС обеспечивает возможность работы с постоянно пополняемой базой лицензионных изданий (более 40000) по широкому спектру дисциплин — учебные, научные издания и периодика, представленные более 600 федеральными, региональными и вузовскими издательствами, научно-исследовательскими институтами и ведущими авторскими коллективами (доступ: после регистрации с компьютера университета с любого компьютера, подключенного к сети Internet).

4. 3FC Znanium https://znanium.ru

Фонд ЭБС Znanium постоянно пополняется электронными версиями изданий, публикуемых Научно-издательским центром ИНФРА-М, коллекциями книг и журналов других российских издательств, а также произведениями отдельных авторов (доступ: с любого компьютера, подключенного к сети Internet; свободная регистрация).

5. Научная электронная библиотека eLIBRARY.RU http://elibrary.ru
Российский информационный портал в области науки, медицины, технологии и образования. На платформе аккумулируются полные тексты и рефераты научных статей и публикаций (доступ: с любого компьютера, подключенного к сети Internet; свободная регистрация).

е) информационные технологии, используемые при осуществлении образовательного процесса:

• программное обеспечение:

№ п/п	Наименование раздела учебной дисциплины (модуля)	Наименование программы	Тип программы
1	Все разделы дисциплины	Вспомогательное программное обеспечение: «Р7-Офис»	Вспомогательная
		Предоставление неисключительных прав на программное обеспечение «Р7-Офис». Лицензиат – ООО «Солярис Технолоджис», г. Саратов.	
		Договор № Ц3-1К-033 от 21.12.2022 г. Срок действия договора: с 01.01.2023 г. Лицензия на 3 года с правом последующего бессрочного использования, для образовательных учреждений.	
2	Все разделы дисциплины	Вспомогательное программное обеспечение: Каspersky Endpoint Security (антивирусное программное обеспечение). Лицензиат — ООО «Солярис Технолоджис», г. Саратов. Сублицензионный договор № 6-1128/2023/КСП-107 от 11.12.2023 г. Срок действия договора: 01.01.2024—	Вспомогательная
3	Все разделы дисциплины	31.12.2024 г. Вспомогательное программное обеспечение:	Вспомогательная
	Бое раздены днециныйны	Предоставление экземпляров текущих версий специальных информационных массивов электронного периодического справочника «Система ГАРАНТ». Исполнитель — ООО «Сервисная Компания «Гарант-Саратов», г. Саратов. Договор об оказании информационных услуг № С-3951/223-024 от 09.01.2024 г. Срок действия договора: 01 января — 30 ноября 2024 года.	Bellowed arealisman

7. Материально-техническое обеспечение дисциплины (модуля)

Для проведения учебных занятий по данной дисциплине используются учебные аудитории № 522, Кванториум (малая аудитория), Кванториум (большая аудитория), 113, 311, 313, 315, № 114 (Киберфизическая лаборатория)

Учебные аудитории проведения учебных занятий ДЛЯ оснащены оборудованием и техническими средствами обучения: для демонстрации проектор, медиаресурсов имеются экран, компьютер или ноутбук: https://vavilovsar.ru/sveden/objects/cabinets/study rooms.html, https://vavilovsar.ru/sveden/objects/cabinets/practice_rooms.html.

Помещения для самостоятельной работы обучающихся (№ 522, Кванториум (малая аудитория), Кванториум (большая аудитория), 113 (класс ВОИР), 311, 313, структурное поздразделение "Инжиниринговый центр" (центр агроробототехники и VR/AR технологий), структурное поздразделение "Инжиниринговый центр" (студенческое конструкторское бюро) и читальный зал библиотеки) оснащены компьютерной техникой с возможностью подключения к сети «Интернет» и обеспечением доступа в электронную информационно-образовательную среду университета:

https://vavilovsar.ru/sveden/objects/cabinets/study_rooms.html, https://vavilovsar.ru/sveden/objects/cabinets/practice_rooms.html .

8. Оценочные материалы

Оценочные материалы, сформированные для проведения текущего контроля успеваемости и промежуточной аттестации обучающихся по дисциплине «Автоматизация технологических процессов сборки (DevOps)» разработан на основании следующих документов:

- Федерального закона Российской Федерации от 29.12.2012 № 273-ФЗ «Об образовании в Российской Федерации» (с изменениями и дополнениями);
- приказа от 6 апреля 2021 г. № 245 «Об утверждении Порядка организации и осуществления образовательной деятельности по образовательным программам высшего образования программам бакалавриата, программам специалитета, программам магистратуры»;

Оценочные материалы представлены в приложении 1 к рабочей программе дисциплины и включают в себя:

- перечень компетенций с указанием этапов их формирования в процессе освоения образовательной программы;
- описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания;
- типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующие этапы формирования компетенций в процессе освоения образовательной программы;
- методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций.

9. Учебно-методическое обеспечение самостоятельной работы

Перечень учебно-методического обеспечения самостоятельной работы представлен в приложении 2 к рабочей программе по дисциплине «Автоматизация технологических процессов сборки (DevOps)».

10. Методические указания для обучающихся по изучению дисциплины «Автоматизация технологических процессов сборки (DevOps)»

Методические указания по изучению дисциплины «Проектирование информационных систем» включают в себя:

- 1. Краткий курс лекций.
- 2. Методические рекомендации по выполнению лабораторных работ (приложение 4).

Рассмотрено и утверждено на заседании кафедры «Цифровое управление процессами в АПК» «12» апреля 2024 года (протокол № 12).