Документ подписан простой электронной подписью

ФИО: Соловьев Дмитрий Александрович

Должность: ректор ФГБОУ ВО Вавиловский университет

Дата подписания: 23.04.2023 11:15:19

Информация о в МИНТИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ

Уникальны**фредера**ы**йыное государственное бюджетное образовательное учреждение** 528682d78e671e566ab07f01fe1ba2172f735a12 высшего образования

«Саратовский государственный аграрный университет имени Н.И. Вавилова»

Утверждаю

Директор филиала

И.А. Кучеренко

2020 года

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

Дисциплина

Основы гидравлики и теплотехники

Специальность

35.02.07 Механизация сельского хозяйства

Квалификация

Техник-механик

выпускника

Нормативный срок

3 года 10 месяцев

обучения

Форма обучения

Очная

Рабочая программа учебной дисциплины «Основы гидравлики и теплотехники» разработана на основе Федерального государственного образовательного стандарта по специальности среднего профессионального образования 35.02.07 «Механизация сельского хозяйства» укрупненной группы специальностей 35.00.00 Сельское, лесное и рыбное хозяйство

Организация-разработчик: Марксовский сельскохозяйственный техникум - филиал ФГБОУ ВО «Саратовский государственный аграрный университет имени Н.И. Вавилова».

Разработчик: Пугачева М.Т., преподаватель.

Рассмотрена на заседании предметной (цикловой) комиссии математических, общих естественнонаучных и общепрофессиональных дисциплин, протокол № 11 от «26» июня 2020 года.

Рекомендована Методическим советом филиала к использованию в учебном процессе по специальности 35.02.07 «Механизация сельского хозяйства», протокол № 5 от «30» июня 2020 года.

Утверждена Директором и Советом филиала, протокол № 3 от «30» июня 2020 года.

СОДЕРЖАНИЕ

1.	ПАСПОРТ ПРОГРАММЫ УЧЕБНОЙ ДИСЦИПЛИНЫ	4	
2.	СТРУКТУРА И СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ	5	
3.	УСЛОВИЯ РЕАЛИЗАЦИИ ПРОГРАММЫ УЧЕБНОЙ ДИСЦИПЛИНЫ	9	
4.	КОНТРОЛЬ И ОЦЕНКА РЕЗУЛЬТАТОВ ОСВОЕНИЯ УЧЕБНОЙ		
ДI	ДИСЦИПЛИНЫ		

1.ПАСПОРТ ПРОГРАММЫ УЧЕБНОЙ ДИСЦИПЛИНЫ ОСНОВЫ ГИДРАВЛИКИ И ТЕПЛОТЕХНИКИ

1.1 Область применения программы учебной дисциплины

Рабочая программа учебной дисциплины является частью программы подготовки специалистов среднего звена в соответствии с ФГОС по специальности СПО 35.02.07 Механизация сельского хозяйства укрупненной группы специальностей 35.00.00 Сельское, лесное и рыбное хозяйство

1.2 Место учебной дисциплины в структуре программы подготовки специалистов среднего звена:

Дисциплина «Основы гидравлики и теплотехники» принадлежит к профессиональному учебному циклу «Общепрофессиональные дисциплины».

1.3 Цели и задачи учебной дисциплины – требования к результатам освоения дисциплины:

Процесс изучения дисциплины направлен на формирование у обучающихся общих и профессиональных компетенций (ОК 1-9, ПК 1.1-1.6, ПК 2.1-2.4, ПК 3.1-3.4, ПК 4.1-4.5).

В результате освоения дисциплины обучающийся должен: **уметь:**

- использовать гидравлические устройства и тепловые установки в производстве. **знать:**
- основные законы гидростатики, кинематики и динамики движущихся потоков;
- особенности движения жидкостей и газов по трубам (трубопроводам);
- основные положения теории подобия гидродинамических и теплообменных процессов;
- основные законы термодинамики;
- характеристики термодинамических процессов и тепломассообмена;
- принципы работы гидравлических машин и систем, их применение;
- виды и характеристики насосов и вентиляторов;
- принципы работы теплообменных аппаратов, их применение.

1.4 Количество часов на освоение учебной дисциплины:

максимальная учебная нагрузка обучающегося - 81 час, в том числе: обязательная аудиторная учебная нагрузка обучающегося - 54 часа; самостоятельная работа обучающегося - 27 часов.

2. СТРУКТУРА И СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

2.1 Объем учебной дисциплины и виды учебной работы

Вид учебной работы	Количество
1	часов
1	2
Максимальная учебная нагрузка (всего)	81
Обязательная аудиторная учебная нагрузка (всего)	54
в том числе:	
лабораторные работы	10
Самостоятельная работа обучающихся (всего)	27
в том числе:	
Промежуточная аттестация в форме дифференцированного зачета в	4 семестре

2.2 Рабочий тематический план и содержание учебной дисциплины «Основы гидравлики и теплотехники»

Наименование разделов и тем	Содержание учебного материала, лабораторные работы и практические занятия, самостоятельная работа обучающихся, курсовая работа(проект)	Объем часов	Уровень освоения
1	2	3	4
Раздел 1. Физические свойства жидкостей и газов		5	
Тема 1.1. Основные физические свойства жидкостей и газов	Жидкость идеальная и реальная, капельная и газообразная. Основные физические свойства жидкости: плотность, удельный объем, сжимаемость, кинематическая и абсолютная вязкость. Изменение вязкости от температуры и давления. Понятие объемного веса и плотности, связь между ними.	2	2
	Самостоятельная работа: решение задач (О.Брюханов Примеры 1.1,1.3, 1.4)	3	
Раздел 2. Основы гидростатики		10	
Тема 2.1 Гидростатическое давление и его свойства	Понятие о гидростатическом давлении и его свойствах. Учет единицы измерения гидростатического давления. Абсолютное, манометрическое давление и вакуум. Классификация приборов, измеряющих давление, их устройство, принцип действия. Контрольный манометр и способы проверки приборов давления.	2	2
	Самостоятельная работа: Написать реферат «Приборы для измерения давления» Решение задач(П.Кременецкий Задача №1,2 стр. 26)	4	
Тема 2.2 Законы гидростатики	Законы гидростатики. Основной закон гидростатики. Закон Паскаля. Закон Архимеда. Работа гидростатических машин: пресс, аккумулятор, домкрат, мультипликатор.	2	2
Тема 2.3 Гидростатические машины	Работа гидростатических машин. Гидравлический пресс. Мультипликатор. Гидравлический аккумулятор. Домкрат.	2	2
Раздел 3. Гидродинамика		34	
Тема 3.1 Виды и режимы движения жидкостей и газов	Смоченный периметр и гидравлический радиус. Движение равномерное, установившееся и неустановившееся, напорное и безнапорное. Ламинарный и турбулентный режимы движения. Опыты Рейнольдса. Границы существования ламинарного и турбулентного режимов.	2	2
Тема 3.2 Статический и динамический напоры. Внутреннее трение в жидкостях и газах	Статический и динамический напор. Потери части напора. Гидравлический и пьезометрический напор. Внутреннее трение в жидкостях и газах. Коэффициент вязкости и его влияние на движение газа и жидкости в трубе.	2	2
Тема 3.3 Уравнение Бернулли для жидкостей и газов	Уравнение Бернулли для идеальной жидкости. Геометрический и энергетический смысл уравнения Бернулли. Уравнение Бернулли для реальной жидкости и газов.	2	2
	Самостоятельная работа: Начертить схему установки Рейнольдса. Сделать сообщение «Практическое применение уравнения Бернулли»	6	

1	2	3	4
Гема 3.4 Местные гидравлические сопротивления и эквивалентная длина	Определение коэффициента гидравлического сопротивления при движении жидкости и газа в трубе при различных режимах движения. Местные сопротивления и определение коэффициентов местных сопротивлений.	2	2
Тема 3.5 Гидравлический расчет простого трубопровода Классификация трубопроводов. Основное расчетное уравнение простого трубопровода. Модуль расхода. Основные расчетные задачи. Эквивалентная труба.		2	2
Гема 3.6 Истечение жидкостей через отверстия	Истечение жидкости через малое отверстие в тонкой стенке. Истечение жидкости через затопленное отверстие. Истечение жидкости через отверстие в толстой стенке.	2	2
Гема 3.7 Истечение жидкостей через насадки	Истечение жидкости через цилиндрические насадки. Истечение жидкости через конические насадки. Истечение жидкости через коноидальные и расходящиеся насадки. Истечение жидкости при переменном напоре.	2	2
	Самостоятельная работа: решение задач (О. Брюханов Пример 4.2 стр.102)	4	
	Лабораторная работа №1: «Изучение физических свойств жидкости»	2	
	Лабораторная работа №2: «Изучение приборов для измерения давления»	2	
	Лабораторная работа №3: «Измерение гидростатического давления»	2	
	Лабораторная работа №4: «Изучение структуры потоков жидкости»	2	
	Лабораторная работа №5: «Определение режима течения»	2	
Раздел 4. Насосы и вентиляторы		14	
Гема 4.1 Классификация насосов	Общие сведения о нагнетателях. Объемные и динамические нагнетатели. Поршневой насос. Зубчатый насос. Пластинчатый насос. Центробежный насос.	2	2
Гема 4.2 Поршневые насосы и их карактеристики	Насосы с ручным приводом. Насосы с механическим приводом. Графики подачи поршневых насосов.	2	2
Гема 4.3 Центробежные насосы и их карактеристики	Устройство центробежных насосов. Характеристики центробежных насосов. Осевая сила насоса. Всасывающая способность. Кавитационный запас.	2	2
	Самостоятельная работа: решение задач (Цибин Л.А. стр.188)	2	
D 4.4 D	Вентиляторы, их назначение и типы: осевые и центробежные. Характеристики вентиляторов.	2	2
Гема 4.4 Вентиляторы и их назначение	Каталог вентиляторов и их подбор при заданных условиях.		

1	2	3	4
Тема 4.5 Характеристики вентиляторов	Подача вентилятора. Полное давление. Коэффициент полезного действия. Потребляемая мощность. Аэродинамическая характеристика.	2	
Раздел 5. Основы теплотехники		18	
Тема 5.1 Первый закон термодинамики	Понятие о теплоте и работе как о формах передачи энергии от одних тел к другим. Понятие термодинамическом процессе. Обратимые и необратимые процессы. Графическое изображение процессов в координатах X-У. Первый закон термодинамики, его аналитическое выражение и физический смысл.	2	2
	Самостоятельная работа: решение задач О. Брюханов (Пример 9.1, 9.2 стр. 195-196)	4	
Тема 5.2 Термодинамические процессы изменения состояния идеального газа	Основные частные случаи термодинамических процессов: изохорный, изобарный, изотермический, адиабатный. Уравнение термодинамического процесса, соотношения между параметрами, определение работы, количества участвующего тепла и изменения внутренней энергии; графическое изображение процесса в диаграмме.	2	2
	Самостоятельная работа: выполнить графическое изображение основных термодинамических процессов	2	
Тема 5.3 Второй закон термодинамики	Схематическое изображение прямого произвольного цикла. Понятие о круговом процессе (или цикле) теплового двигателя. Цикл Карно для идеального газа. Сущность второго закона термодинамики. Понятие об энтропии.	2	2
Тема 5.4 Цикл Карно и его значение	Термодинамическое КПД. Процессы цикла Карно. Понятие об энтропии газа. Процессы при энтропии газа.	2	2
Тема 5.5 Водяной пар и его свойства	Процесс парообразования. Температура и давление насыщения. Насыщенный, сухой и влажный пар. Степень сухости пара. Парогенератор.	2	2
Тема 5.6 Виды теплообмена Способы распространения тепла	Теплообмен как процесс. Сложный теплообмен. Простой теплообмен. Процесс теплопроводности. Процесс конвенции. Тепловое излучение. Способы распространения тепла: теплопроводность, конвективный теплообмен, лучистый теплообмен, их краткая характеристика.	2	2
	Bcero:	81	

3. УСЛОВИЯ РЕАЛИЗАЦИИ УЧЕБНОЙ ДИСЦИПЛИНЫ

3.1 Требования к минимальному материально-техническому обеспечению

Реализация учебной дисциплины «Основы гидравлики и теплотехники» требует наличия лаборатории гидравлики и теплотехники, оборудованной: рабочее место преподавателя; рабочие места обучающихся; доска ученическая обычная, настенная, компьютер с лицензионным программным обеспечением, графопроектор Медиум-524М, регулятор РДБК-1, клапан ПСК-50, макет ШРП, катодная станция защиты ВКЭМ-0,6 (УНП), КПЗ-50 П (УНП), УНП по электрооборудованию, Интерактивная доска, Проектор, Портативная лаборатория «Капелька».

3.2 Информационное обеспечение обучения

3.2.1 Печатные и электронные издания

1. Замалеев З.Х. и др. «Основы гидравлики и теплотехники», учебное пособие, 2018, изд. «Лань»

https://e.lanbook.com/reader/book/100922/#1

3.2.2. Дополнительные источники

- 1.Брюханов О.Н., Мелик-Аракелян А.Т., Коробко В.И.Основы гидравлики и теплотехники М.: ОИЦ «Академия», 2014.
- 2.Гусев, А. А. Основы гидравлики: учебник для СПО / А. А. Гусев. 2-е изд., испр. и доп. —М: Издательство Юрайт, 2017. 285 с.
 - 3. Кременецкий И.Н. Гидравлика. М.: Энергия, 2009.
 - 4. Ухин Б.В., Гусев А.А. Гидравлика. –М.: ИНФРА-М, 2008.
 - 5. Тужилкин А.М. Примеры гидравлических расчетов. М.: АЦВ, 2008.

4.КОНТРОЛЬ И ОЦЕНКА РЕЗУЛЬТАТОВ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ

Контроль и оценка результатов освоения учебной дисциплины осуществляется преподавателем в процессе проведения лабораторных занятий, тестирования, а также выполнения обучающимися индивидуальных заданий, решения задач.

Результаты обучения	Формы и методы контроля и оценки результатов
(освоенные умения, усвоенные знания)	обучения
Освоенные умения:	
использовать гидравлические устройства и тепловые	Экспертная оценка на лабораторной работе,
установки в производстве	внеаудиторная самостоятельная работа
	Дифференцированный зачет
Усвоенные знания:	
знание основных законов гидростатики, кинематики	Устный опрос, тестирование, внеаудиторная
и динамики движущихся потоков	самостоятельная работа
	Дифференцированный зачет
особенностей движения жидкостей и газов по	Тесты, контрольные упражнения, решение задач,
трубам (трубопроводам)	экспертная оценка на лабораторной работе,
	внеаудиторная самостоятельная работа
	Дифференцированный зачет
основные положения теории подобия	Тесты, контрольные упражнения, решение задач,
гидродинамических и теплообменных процессов	внеаудиторная самостоятельная работа
	Дифференцированный зачет
характеристики термодинамических процессов и	Тесты, контрольные упражнения, решение задач,
тепломассообмена	внеаудиторная самостоятельная работа
	Дифференцированный зачет
принципы работы гидравлических машин и систем,	Устный опрос, тестирование, внеаудиторная
их применение	самостоятельная работа
	Дифференцированный зачет
виды и характеристики насосов и вентиляторов	Тесты, контрольные упражнения, решение задач,
	внеаудиторная самостоятельная работа
	Дифференцированный зачет
принципы работы теплообменных аппаратов, их	Тесты, контрольные упражнения, решение задач,
применение.	внеаудиторная самостоятельная работа
	Дифференцированный зачет
	дифференцированный зачет