Документ подписан простой электронной подписью Информация о владельце:

ФИО: Соловьев Дмитрий Александрович Должность: ректор ФГБОУ ВО Саратовский ГАУ Дата подписания: 26.04.2021 13:15:53 Уникальный программный ключ:

5b8335c1f3d6e7bФeдeральное 1665ударственное бюджетное образовательное учреждение высшего образования

Саратовский государственный аграрный университет им. Н.И. Вавилова.

Методические указания для выполнения курсовых проектов по дисциплине «Детали машин и основы конструирования»

ПРОЕКТИРОВАНИЕ ПРИВОДОВ НАЗЕМНЫХ ТРАНСПОРТНО-ТЕХНОЛОГИЧЕСКИХ МАШИН

Проектирование приводов транспортноназемных технологических машин: методические указания ДЛЯ курсового проектирования «Детали ПО дисциплине основы машин конструирования» для обучающихся по направлению подготовки «Наземные транспортно-технологические комплексы» / Сост.: П.И. Павлов // ФГБОУ ВО «Саратовский ГАУ». — Саратов, 2019. — 165 с.

ВВЕДЕНИЕ

Курсовое проектирование по курсу «Детали машин и основы конструирования» является завершающим этапом в общей профессиональной подготовке обучающихся, позволяет перейти к изучению специальных дисциплин.

Целью учебного пособия является получение знаний навыков и умений по расчету и проектированию деталей машин и основам конструирования на примере проектирования приводов транспортирующих машин. В учебном пособии приведена общая теория расчета основных элементов привода: ременной, цепной передачи, цилиндрического и червячного редуктора и даны два примера расчета включающие в себя все вышеперечисленные элементы.

Курсовой проект (работа) по дисциплине «Детали машин и основы конструирования» (часть 1 проектирование приводов транспортирующих машин) включает в себя: расчетно-пояснительную записку 20-30 стр., с необходимыми расчетами, таблицами, схемами, эскизами и графическую часть состоящую из трех (двух) листов формата A1 (общий вид, сборочный чертеж и рабочие чертежи деталей).

Все величины, расчетные формулы и примеры расчета деталей машин даны в Международной системе единиц в соответствии с существующей нормативно-технической документацией.

Содержание

Введение	3
Содержание	4
1 Исходные данные для расчета	6
2. Кинематический и силовой расчет привода	7
2.1. Определение КПД привода	
2.2. Определение необходимой мощности электродвигателя	9
2.3. Выбор электродвигателя	
2.4. Определение передаточного отношения привода и	
распределение его по ступеням (типу передачи)	11
2.5. Определение угловых скорости, мощностей и	
моментов на валах привода	12
3. Расчет передач гибкой связью	11
3.1. Расчет плоскоременной передачи	11
3.2. Расчет клиноременной передачи	
3.3. Расчет цепной передачи	
4. Расчет закрытой цилиндрической передачи	
5. Расчет закрытой червячной передачи	43
6. Расчет конической зубчатой передачи	44
7. Предварительный расчет валов и конструктивные	
размеры корпуса редуктора	45
8. Первый этап компоновки	49
8.1. Зубчатого цилиндрического редуктора	59
8.2. Червячного редуктора	61
8.3. Конического редуктора	63
9. Проверка долговечности подшипника	66
10. Второй этап компоновки редуктора	78
10.1. Цилиндрического редуктора	78
10.2. Червячного редуктора	81
10.3. Конического редуктора	82
11. Подбор шпонок по прочности шпоночных соединений	82
12. Уточненный расчет валов.	84
13. Выбор сорта масла	88
14. Тепловой расчет червячного редуктора	89
15. Проверка червяка на жесткость	89
16. Посадки основных деталей редуктора	90
17. Подбор муфты	91
Примеры расчета	93
Пример расчета привода с одноступенчатым цилиндрическим	
редуктором и цепной передачей	93
Расчет червячного редуктора и ременной передачи	116

Расчет привода с одноступенчатым коническим редуктором	и цепной
передачей	137
Список используемой литературы	157
Приложения	

1. ИСХОДНЫЕ ДАННЫЕ ДЛЯ РАСЧЁТА ПРИВОДА

Расчетно-пояснительная записка состоит из следующих разделов:

- 1 Определение КПД привода.
- 2 Выбор электродвигателя.
- 3 Кинематический расчет.
- 4 Расчет передачи с гибкой связью.
- 5 Расчет редуктора.

Исходные данные для расчета берутся из технических условий бланка заданий на курсовое проектирование.

При рассмотрении схем заданий (рис.1) использованы следующие параметры привода: потребляемая мощность P, кBт; угловая скорость ω , c^{-1} ; срок службы редуктора в часах.

Одноступенчатые редукторы зубчатые и червячные часто используются в следующих схемах приводов:

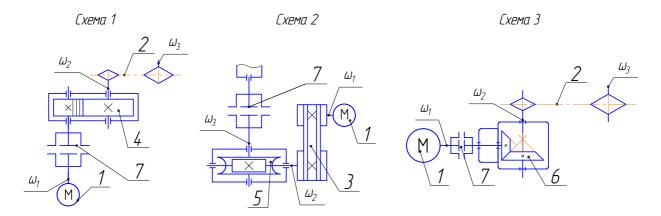


Рис.1. Схемы приводов: I — с цилиндрическим зубчатым редуктором; II — с червячным редуктором; III — с коническим зубчатым редуктором; 1 — электродвигатель; передачи: 2 —цепная, 3 — клиноременная; редукторы: 4 — цилиндрический зубчатый, 5 — червячный; 6 — конический зубчатый; 7 — муфта.

Если в задании указаны окружная сила $F_{\rm t}$ (H) на барабане или звездочке привода, скорость движения ленты или тяговой цепи υ (м/с), а также диаметр барабана D (м) или шаг цепи p (м) и число зубьев z тяговой звездочки, то угловую скорость ω и частоту вращения выходного вала n (с $^{-1}$), а также и потребляемую мощность P (кВт) можно получить по формулам:

$$\omega = \pi n/30$$
, $n = 60 \text{ U}/\pi D$, $D=p/\sin(\pi/z)$; $P=F_t U$

2. КИНЕМАТИЧЕСКИЙ И СИЛОВОЙ РАСЧЕТ ПРИВОДА

Расчет привода начинается с вычерчивания кинематической схемы привода из задания, на которой проставляется нумерация и обозначения (см. рис. 1).

2.1. Определение КПД привода.

Общий КПД привода η равен произведению КПД последовательно соединенных подвижных звеньев $\eta_1 \eta_2 \eta_3 ... \eta_8$ (табл. 1).

$$\eta = \eta_1 \eta_2 \eta_3 \dots \eta_8 \tag{2.1}$$

Ориентировочные значения КПД с учетом потерь в подшипниках выбираем из табл. 1.

Таблица 1 КПД различных типов передач

Тип передачи	Обознач ения	Закрытая передача	Открытая передача
Зубчатая: с цилиндрическими колесами с коническими колесами	η_1 η_2	0,960,98 0,950,97	0,930,95 0,920,94
Червячная, при передаточном числе: свыше 30 свыше 14 до 30 свыше 8 до 14	η_3 η_3 η_3	0,70,8 0,750,85 0,80,9	- - -
Плоскоременная Клиноременная Цепная Муфта соединительная Подшипники качения (одна пара)	η ₄ η ₅ η ₆ η ₇ η ₈	- 0,97 - 0,99	0,97 0,96 0,93 1,0

2.2. Определение необходимой мощности электродвигателя

Мощность электродвигателя определяют по формуле:

$$P_1 = P_3/\eta, \tag{2.2}$$

где P_I – мощность на валу электродвигателя, кВт; P_3 – мощность на выходном валу (указана в задании), кВт; η - общий КПД привода.

2.3. Выбор электродвигателя

Согласно полученной мощности P_1 выбираем электродвигатель по табл. 2. Рекомендуется принимать асинхронный электродвигатель общего назначения в закрытом обдуваемом исполнении с синхронной частотой вращения $n_9 = 1000$ мин⁻¹ или $n_9 = 1500$ мин⁻¹. Данные двигатели подходят ко всем рассматриваемым схемам. Если принять более быстроходный двигатель $n_9 = 3000$ мин⁻¹, то это повлечет рост передаточного отношения, что приведет к увеличению параметров передачи, габаритных размеров и массы редуктора.

Таблица 2
Электродвигатели асинхронные трехфазные единой серии 4A закрытые обдуваемые

Синхронная частота вращения						
150	00 мин ⁻¹		1()00 мин ⁻¹		
Тип двигателя	$P_{\scriptscriptstyle 9}$, к $\mathrm{B}\mathrm{T}$	$n_{\scriptscriptstyle 9,}$ мин $^{\scriptscriptstyle -1}$	Тип двигателя	$P_{\scriptscriptstyle 9}$, к B т	<i>п</i> _{э,} мин ⁻¹	
1	2	3	4	5	6	
4А56А4УЗ	0,12	1375	4А63А6У3	0,18	885	
4А56В4УЗ	0,18	1365	4А63В6У3	0,25	890	
4А63А4У3	0,25	1380	4А71А6УЗ	0,37	910	
4А63В4У3	0,37	1365	4А71В6УЗ	0,55	900	
4А71А4У3	0,55	1390	4А80А6У3	0,75	915	
4А71В4У3	0,75	1390	4А80В6УЗ	1,1	920	
4А80А4У3	1,1	1420	4A90L6У3	1,5	935	
4А80В4У3	1,5	1415	4A100L6У3	2,2	950	
4A90L4Y3	2,2	1425	4А112МА6УЗ	3,0	955	
4A100S4У3	3,0	1435	4А112МВ6УЗ	4,0	950	
4A100L4У3	4,0	1430	4A132S6У3	5,5	965	
4А112М4У3	5,5	1445	4А132М6У3	7,5	970	
4A132S4У3	7,5	1445	4A160S6У3	11,0	975	
4А132М4У3	11,0	1460	4А160М6УЗ	15,0	975	
4A160S4У3	15,0	1465	4А180М6УЗ	18,5	975	
4А160М4У3	18,5	1465	4А200М6У3	22,0	975	
4A180S4У3	22,0	1470	4A200L6У3	30,0	980	
4А180М4У3	30,0	1470	4А225М6У3	37,0	980	
4А200М4У3	37,0	1475	4A250S6У3	45,0	985	
4A200L4У3	45,0	1475	4А250М6УЗ	55,0	985	
4А225М4У3	55,0	1480	4A280S6У3	75,0	985	

2.4. Определение передаточного отношения привода и распределение его по ступеням (типу передачи)

Общее передаточное отношение привода (рис. 1):

$$i = \omega_l/\omega_3 \tag{2.3}$$

где ω_1 – угловая скорость вращения вала электродвигателя, с⁻¹,

$$\omega_I = \pi n_3 / 30 \tag{2.4}$$

 ω_3 - угловая скорость вращения приводного вала, с⁻¹ (указана в задании).

$$i = i_1 i_2 \tag{2.5}$$

где i_1 — передаточное отношение закрытой цилиндрической прямозубой передачи; $i_1 = i/i_2$.

 i_2 – передаточное отношение передачи с гибкой связью.

Передаточные отношения передач привода выбираем по табл. 3.

Таблица 3 Рекомендуемые передаточные отношения различных типов передач.

Тип передачи	Передача		Тип передачи	Пере	дача
	закрытая	открытая		закрытая	открытая
Зубчатая:			Ременная:		
c			с плоским		
цилиндрическими	26	25	ремнем	_	24
колесами			с натяжным		
с коническими	25	25	роликом	_	46
колесами	880	1560	с клиновым		
Червячная			ремнем	_	25
			с зубчатым		
Цепная	_	26	ремнем	_	212

Передаточные отношения (числа) редукторов должны соответствовать ГОСТ 2185-66:

- для зубчатой передачи: 1-й ряд: 1; 1,25; 1,6; 2,0; 2,5; 3,15; 4,0; 5,0; 6,3; 8,0; 10,0; 2-й ряд: 1,12; 1,4; 1,8; 2,24; 2,8; 3,55; 4,5; 5,6; 7,1; 9,0; 11,2. Первый ряд предпочтительнее второго.
- для червяной передачи: 8,0; 9,0; 10,0; 11,2; 12,5; 14,0; 16,0; 18,0; 20,0; 22,4; 25,0; 28,0; 31,5; 35,5; 40,0; 45,0; 50,0; 56,0; 63,0; 71,0;80,0; 90,0; 100,0.

При определении передаточных отношений на каждой ступени привода первоначально по ГОСТ задается передаточное число зубчатой или червячной передачи и далее по отношению общего передаточного числа к передаточному числу редуктора определяется передаточное отношение ременной или цепной передачи в диапазоне допускаемых передаточных чисел для данного типа передачи.

2.5. Определение угловых скоростей, мощностей и моментов на валах привода

Исходные данные (см. рис. 1, схема 1):

- мощность ведущего вала передачи P_1 , кВт;
- угловая скорость вала электродвигателя ведущего шкива ω_1 , c^{-1} .
- передаточное отношение закрытой цилиндрической прямозубой передачи i_1 , передаточное отношение цепной передачи i_2 .

Крутящий момент на ведущем валу привода T_1 (H·м):

$$T_1 = P_1/\omega_1,$$
 (2.6)

Угловую скорость ω_2 , частоту вращения n_2 , мощность P_2 и момент T_2 на втором валу привода определяют по формулам:

$$\omega_2 = \omega_1/i_1$$
; $n_2 = n_3/i_1$, $P_2 = P_1\eta_1\eta_7\eta_8$; $T_2 = P_2/\omega_2$,

где $\eta_1\eta_7\eta_8$ - КПД элементов привода между первым и вторым валом (КПД зубчатой передачи, муфты, подшипников).

Определяем угловую скорость ω_3 , частоту вращения n_3 , мощность P_3 и момент T_3 на ведомом валу привода:

$$\omega_3 = \omega_2/i_2$$
; $n_3 = n_2/i_2$, $P_3 = P_2\eta_6\eta_8$; $T_3 = P_3/\omega_3$,

где $\eta_6\eta_8$ - КПД элементов привода между вторым и третьим валом (КПД цепной передачи, подшипников).

3. РАСЧЕТ ПЕРЕДАЧ ГИБКОЙ СВЯЗЬЮ

3.1. Расчет плоскоременной передачи

Исходные данные:

- мощность ведущего вала ременной передачи P_1 , кВт;
- момент ведущего вала ременной передачи T_1 , $H \cdot M$;
- угловая скорость вала электродвигателя или ведущего шкива ω_1 , рад/с.
 - передаточное отношение i_1 .

Порядок расчета:

Диаметр ведущего шкива d_1 , мм:

$$d_1 = (5, 2...6, 4)\sqrt[3]{T_1} \tag{3.1}$$

Значение d_1 выбирают в полученном диапазоне из стандартного ряда диаметров шкивов (ГОСТ 17383-73), мм: 50, 63, 80, 90, 100, 112, 125, 140, 160, 180, 200, 225, 250, 280, 320, 360, 400, 450, 500, 560, 630, 710, 800, 900, 1000, 1120, 1400.

Окружная скорость ремня υ , м/с:

$$\upsilon = \frac{\omega_{1}d_{1}}{2 \cdot 10^{3}} \tag{3.2}$$

При найденной υ выбираем тип ремня (табл. 4).

Таблица 4 Выбор типа ремня в зависимости от условий работы

Тип ремня	Допускае-	Колебания рабочей	Кратковре-	Допустимая
1	мая ско-	нагрузки	менные	темпера-
	рость, м/с		перегрузки, %	тура, °С
Прорезиненные				
тип А	30	Малые и средние	20 - 30	60
		нагрузки		
тип Б	20	Тяжелые условия	20 - 30	60
тип В	15	Малые нагрузки	20 - 30	60
Хлопчатобу-	20	Малые нагрузки	30 - 40	50
мажные				
Шерстяные	30	Средние и тяжелые	40 - 50	60
		нагрузки		
Кожаные	40	Тяжелые нагрузки	40 - 50	50 - 70

В современных приводах сельскохозяйственных и транспортирующих машин рекомендуется выбирать прорезиненные (резинотканевые) ремни.

Диаметр ведомого шкива d_2 , мм:

$$d_2 = i_1 d_1 (1 - \varepsilon) \tag{3.3}$$

Коэффициент скольжения ремня $\varepsilon = 0,01...0,02$. Для передач с регулируемым натяжением $\varepsilon = 0,01$.

Рекомендуемое межосевое расстояние передачи а, мм:

$$a \ge 2(d_1 + d_2) \tag{3.4}$$

Длина ремня L, мм:

$$L = 2a + 0.5\pi (d_1 + d_2) + \frac{(d_2 - d_1)^2}{4a}$$
 (3.5)

Частота пробегов ремня в 1 с:

$$v = \frac{\upsilon \cdot 10^3}{L} \tag{3.6}$$

Если v > 10, то необходимо увеличить межосевое расстояние.

Угол обхвата ведущего шкива ремнем α₂:

$$\alpha_1 = 180^{\circ} - 57^{\circ} (d_2 - d_1)/a \ge 150^{\circ}$$
 (3.7)

Окружное усилие на ведущем шкиве F_t , H:

$$F_t = P_1/v \tag{3.8}$$

Из табл. 5 выбираем ремень с числом прокладок z. Проверяем выполнение условия $\delta \leq 0.025 d_1$.

Таблица 5 Ремни плоские резинотканевые (ГОСТ 23831-79)

Tayyyyaayag yanayganyagyyya	Прокладки из ткани					
Техническая характеристика прокладок	Б-800	БКНЛ	TA-150, TK-150	TK-200		
Номинальная прочность,						
прокладки Н/мм:						
по основе	55	55	150	200		
по утку	16	20	65	65		
Наибольшая допускаемая						
нагрузка p_0 на 1 мм ширины						
прокладки, Н	3	3	10	13		
Толщина одной прокладки с						
резиновой прослойкой δ, мм	1,5	1,2	1,2	1,3		
Поверхностная плотность						
прокладки с резиновой						
прослойкой, кг/ м^2	1,6	1,3	1,3	1,4		
Число прокладок <i>z</i> при ширине						
ремня <i>B</i> , мм:						
2071	3 - 5	3 - 5				
80112	3 - 6	3 – 6				
125560	3 - 6	3 – 6	3 – 4	3 - 4		

Начальное допускаемое полезное напряжение ремня определяют по табл. 6.

Таблица 6 Значения σ_0 для плоских ремней

Ремень	σ ₀ , ΜΠa	$\delta/d_{ m min}$		
1 смень	0 ₀ , wii a	рекомендуемое	допускаемое	
Кожаный	$2,84-29,4\delta/d_{\min}$	0,0286	0,04	
Резинотканевый	$2,45-9,818/d_{\min}$	0,025	0,0333	
Хлопчатобумажный	$2,06-14,78/d_{\min}$	0,0250,0333	0,02860,04	

Принимая $\delta/d_{\min} = 0.025$ для резинотканевого ремня получают:

$$\sigma_0 = 2.45 - 9.81\delta/d_{\min}$$
 (3.9)

Допускаемая рабочая нагрузка на 1 мм ширины прокладки, Н:

$$[\sigma_0] = \sigma_0 C_0 C_{\nu} C_{\alpha} C_{p} \tag{3.10}$$

где C_0 – коэффициент, учитывающий расположение передачи. Для передач с наклоном до 60° C_0 = 1; $60...80^{\circ}$ – C_0 = 0,9; $80...90^{\circ}$ – C_0 =0,8; C_{\circ} – коэффициент, учитывающий влияние натяжения от центробежной силы, уменьшающей сцепление ремня со шкивом:

υ, м/c	5	10	15	20
C_{υ}	1,03	1,0	0,95	0,88

 C_{α} – коэффициент, учитывающий влияние угла обхвата на ведомом шкиве; $C_{\alpha} = 1 - 0.003(180 - \alpha_1)$ или по табл. 7; $C_{\rm p}$ - коэффициент, учитывающий влияние режима работы (табл. 8).

Значения коэффициента Са

Таблица 7

Ремни	Угол обхвата $lpha_1$								
ГСМНИ	80°	120°	140°	150°	160°	170°	180°	200°	220°
Плоские	_	0,82	0,88	0,91	0,94	0,97	1,00	1,10	1,20
Клиновые	0,62	0,83	0,89	0,92	0,95	0,98	1,00	_	_

Значения коэффициента Ср

Таблица 8

Характер нагрузки	Тип машины	C_p
Спокойная, перегрузка при	Вентиляторы, воздуходувки, цен-	1,0
пуске ≤120%	гробежные насосы и компрессоры,	
	ленточные транспортеры	
Умеренные колебания,	Насосы и компрессоры поршневые,	<u>0,9</u>
перегрузка при пуске ≤150%	цепные транспортеры	1,1
Значительные колебания,	Винтовые и скребковые транспортеры	<u>0,8</u>
перегрузка при пуске ≤200%		1,2
Неравномерная, ударная с	Молоты, дробилки, шаровые мельницы,	0,7
резкими колебаниями, пе-	подъемники, экскаваторы	1,3
регрузка при пуске ≤300%		

Примечание: В знаменателе приведены значения для клиноременной передачи

Ширина ремня b, мм:

$$b \ge F_t/z[p] \tag{3.11}$$

где F_t – окружное усилие на ведущем шкиве, H; z – число прокладок, выбираемое по табл. 5; [p] – допускаемая рабочая нагрузка на 1 мм ширины прокладки H:

$$[p]=p_0C_0C_{\upsilon}C_{\alpha}C_{\mathfrak{p}}$$

где p_0 - наибольшая допускаемая нагрузка на 1 мм ширины прокладки Н (см. табл. 5).

Ширину ремня b (мм) назначают из стандартного ряда (выборка): 20, 25, 32, 40, 50, 63, 71, 80, 90, 100, 112, 125, 140, 160, 180, 200, 224, 250, 280,

315, 355, 400, 450, 500, 560. Ширину шкива B (мм) выбирают из этого же ряда чисел следующим за шириной ремня.

Достаточная эластичность ремня обеспечивается при $\delta = \delta_0 z \le 0.025 d_1$. Если данное неравенство не выполнено, то следует уменьшить число прокладок z и пересчитать ширину ремня.

Сила предварительного натяжения ремня F_0 , H:

$$F_0 = \sigma_0 b \delta \tag{3.12}$$

Натяжение ведущей F_1 и ведомой F_2 ветвей ременной передачи, соответственно:

$$F_1 = F_0 + 0.5F_t$$
;
 $F_2 = F_0 - 0.5F_t$;

Максимальное напряжение в сечении ремня σ_{max} , МПа:

$$\sigma_{\text{max}} = \sigma_1 + \sigma_{\text{M}} + \sigma_{\text{D}}$$

где $\sigma_1 = F_1/b\delta$ — напряжение, создаваемое силой F_1 в ведущей ветви МПа; $\sigma_{\rm M} = E_{\rm M} \delta/d_1$ — напряжение изгиба, МПа; для кожаных и резинотканевых ремней $E_{\rm M} = 100...200$ МПа, для хлопчатобумажных $E_{\rm M} = 50...80$ МПа; $\sigma_{\rm D} = \rho \upsilon^2 \cdot 10^{-6}$ — напряжение от центробежной силы, МПа, при плотности ремня $\rho = 1100...1200$ кг/м³.

Необходимо выполнение условия $\sigma_{max} \le \sigma_{-1} = 7$ МПа для резинотканевых и кожаных ремней, и $\sigma_{max} \le \sigma_{-1} = 5$ для хлопчатобумажных ремней.

Долговечность ремня, H_0 (ч) определяют в зависимости от базового числа циклов (обычно 10^7) и от числа пробегов за все время эксплуатации:

$$H_0 = \frac{\sigma_{-1}^6 \cdot 10^7 C_i C_{_H}}{\sigma_{\text{max}}^6 2 \cdot 3600 \nu}$$
 (3.13)

где v — число побегов ремня в 1 с; $C_i \approx 1.5 \sqrt[3]{i} - 0.5$ — коэффициент влияния передаточного отношения i; при периодической нагрузке $C_{\rm H}$ =2; при постоянной нагрузке $C_{\rm H}$ =1.

Если полученное значение долговечности ремня не удовлетворяет допускаемому (2500...3000 ч), то передачу следует пересчитать.

Сила, действующая на вал Q, H

$$Q = 2\sigma_0 b \delta \sin \alpha_1 / 2 \tag{3.14}$$

Максимальная начальная сила, действующая на вал Q_{max} , H:

$$Q_{\text{max}} = 1,5Q \tag{3.15}$$

Шкивы (рис.2) плоскоременных передач выполняют с гладким ободом (меньшие) и с выпуклым ободом (большие): из чугуна СЧ15-32, СЧ12-28 при окружных скоростях до 30 м/с, литые из стали 25Л (30–50 м/с) и из алюминиевых сплавов и легированной стали для быстроходных передач до 100 м/с.

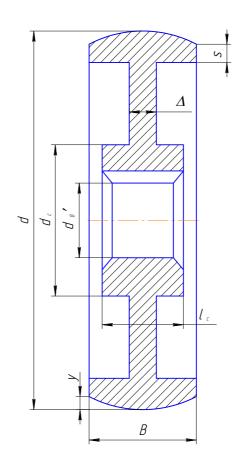


Рис. 2. Конструктивные размеры шкива

Ширину обода B (мм) выбирают стандартного ряда чисел следующим за шириной ремня b или по формуле:

$$B = (1,15...1,25)b.$$

Шероховатость рабочей поверхности обода $R_a \le 2.5$ мкм.

Толщина обода, мм:

- для чугунных шкивов S = 0.005(d + 2B) + 3;
- для стальных шкивов $S_c = 0.7S$;
- ведущего шкива $S_1 = 0.005(d_1 + 2B) + 3$;
- ведомого шкива $S_2 = 0.005(d_2 + 2B) + 3$.

Шкивы диаметром до 300 мм выполняют сплошными, диаметром до 500 мм – с 4 спицами, диаметром более 500 мм – с 6 спицами.

Зависимость толщины обода от диаметра для чугунных шкивов представлена в табл. 9.

Таблица 9 Зависимость толщины обода от диаметра для чугунных шкивов, мм

Диаметр шкива <i>d</i>	≤200	224400	450630	710800	9001000
Толщина обода S	4	5	6	7	8
Диаметр шкива <i>d</i>	11201250	1400	1600	1800	2000
Толщина обода S	9	10	11	12	13

Толщина диска Δ, мм:

$$\Delta = (0,25...0,35)d_{\rm B1}$$

где d_{B1} – диаметр вала, на котором установлен шкив, мм.

Толщина диска должна быть не менее 8 мм. Длина ступиц $l_{\rm c}$ зависит от диаметра вала и ширины шкива:

$$l_{c}=(1,4...1,8) d_{B}' \leq B.$$

Диаметр ступиц шкивов $d_c = (1,7...1,8) d_{B1}$.

Геометрические размеры ведомого шкива Δ_2 ; $l_{\rm c2}$; $d_{\rm c2}$, находятся после определения диаметра вала $d_{\rm B2}$.

Из табл. 10 определяют стрелу выпуклости шкивов У.

Таблица 10 **Стрела выпуклости шкива** \it{Y} , мм

Ширина обода	Диаметр шкива d , мм									
B, mm	250280	250280 315355 400450 500560 6301000								
≤125	0,8	1,0	1,0	1,0	1,0					
125160	0,8	1,0	1,2	1,5	1,5					
≥160	0,8	1,0	1,2	1,5	2,0					

3.2. Расчет клиноременной передачи

Исходные данные (см. рис. 1 схема II):

- мощность и крутящий момент на ведущем валу клиноременной передачи P_1 , кВт; T_1 , Н·м;
 - угловая скорость на ведущем валу ω_1 , c^{-1} ;
 - передаточное отношение i_1 .

Тип ремня определяют с учетом крутящего момента на ведущем валу (табл. 11 или рис. 3). Ремни меньшего сечения имеют большие срок службы и КПД передачи, следовательно, предпочтительнее из двух возможных сечений меньшее (предыдущее).

Таблица 11 **Характеристики клиновых ремней**

	Сечение	Момент на	Наименьший	Допускаемая
Тип ремня		быстроходном валу	диаметр шкива	скорость [υ],
	ремня	T_1 , H·M	$d_{1\min}$, MM	м/с
Клиновой нор-	O	<30	63	20
мального сечения	A	1560	90	20
	Б	50150	125	20
	В	120600	200	20
	Γ	4502400	355	30
	Д	16006000	500	30
	Е	4000<	800	30
Клиновой узкий	УО	<150	63	35
	УА	90400	90	35
	УБ	3002000	140	35
	УВ	1500<	224	35

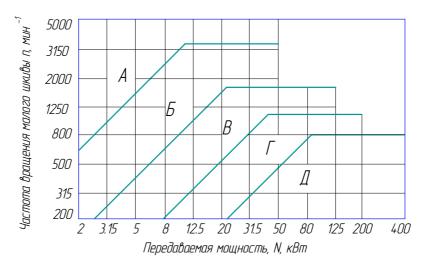


Рис. 3. Номограмма определения требуемого сечения ремня

Диаметр ведущего (меньшего) шкива d_1 , мм:

$$d_1 = 38...42\sqrt[3]{T_1} \tag{3.16}$$

Окончательно выбирают d_1 (мм) из стандартного ряда, но не менее минимального, указанного в табл. 12.

Таблица 12 Нормальная мощность P_0 , кВт передаваемая одним клиновым ремнем (по ГОСТ 1284.3-80, выборка)

Сечение					Частота і	вращения	n_1 , мин ⁻¹		
ремня (дли-	d_1 ,	i	400						2000
на $L_{\rm p}$, мм)	MM		400	800	950	1200	1450	1600	2000
1	2	3	4	5	6	7	8	9	10
O (1320)		1,2	0,22	0,39	0,45	0,54	0,63	0,69	0,82
(4002500)	71	1,5	0,23	0,40	0,46	0,56	0,66	0,71	0,84
		≥3	0,23	0,42	0,48	0,58	0,68	0,73	0,87
		1,2	0,26	0,47	0,55	0,66	0,77	0,84	1,0
	80	1,5	0,27	0,49	0,56	0,68	0,80	0,86	1,03
		≥3	0,28	0,50	0,58	0,71	0,82	0,89	1,06
		1,2	0,36	0,65	0,75	0,92	1,07	1,16	1,39
	100	1,5	0,37	0,67	0,78	0,95	1,11	1,20	1,43
		≥3	0,38	0,70	0,80	0,98	1,14	1,24	1,48
		1,2	0,42	0,76	0,88	1,07	1,25	1,35	1,61
	112	1,5	0,43	0,78	0,91	1,10	1,29	1,40	1,66
		≥3	0,44	0,81	0,94	1,14	1,33	1,44	1,72
A (1700)		1,2	0,50	0,88	1,01	1,22	1,41	1,52	1,65
(5604000)	100	1,5	0,52	0,91	1,05	1,25	1,45	1,57	1,71
		≥3	0,53	0,94	1,08	1,30	1,50	1,62	1,76
		1,2	0,71	1,28	1,47	1,77	2,06	2,22	2,42
	125	1,5	0,74	1,32	1,52	1,83	2,13	2,29	2,50
		≥3	0,76	1,36	1,57	1,89	2,19	2,36	2,58
A (1700)		1,2	1,0	1,81	2,09	2,52	2,92	3,14	3,61
(5604000)	160	1,5	1,03	1,87	2,15	2,60	3,02	3,24	3,53
		≥3	1,07	1,93	2,22	2,69	3,11	3,35	3,64
		1,2	1,16	2,10	2,43	2,93	3,38	3,63	3,94
	180	1,5	1,20	2,17	2,51	3,03	3,50	3,75	4,07
		≥3	1,24	2,24	2,59	3,12	3,61	3,87	4,19
Б (2240)		1,2	1,12	1,95	2,22	2,64	3,01	3,21	3,66
(8006300)	140	1,5	1,16	2,01	2,30	2,72	3,10	3,32	3,78
		≥3	1,20	2,08	2,37	2,82	3,21	3,42	3,90
		1,2	1,70	3,01	3,45	4,11	4,70	5,01	5,67
	180	1,5	1,76	3,11	3,56	4,25	4,85	5,17	5,86
	100		-	-		-		-	
		≥3	1,81	3,21	3,67	4,38	5,01	5,34	6,05

	1								
		1,2	2,32	4,13	4,73	5,63	6,39	6,77	7,55
	224	1,5	2,40	4,27	4,89	5,81	6,60	7,00	7,80
		≥3	2,47	4,40	5,04	6,00	6,81	7,22	8,05
		1,2	3,09	5,49	6,26	7,42	8,30	8,69	9,20
	280	1,5	3,19	5,67	6,47	7,66	8,57	8,97	9,50
		≥3	3,29	5,85	6,67	7,91	8,84	9,26	9,80
B (3750)		1,2	3,20	5,47	6,18	7,18	7,97	_	_
(1800	224	1,5	3,31	5,65	6,38	7,45	8,23		
10000)		≥3	3,41	5,83	6,58	7,69	8,49		
		1,2	4,63	8,04	9,08	10,49	11,47	_	_
	280	1,5	4,78	8,30	9,37	10,83	11,84		
		≥3	4,93	8,57	9,67	11,17	12,22		
		1,2	6,47	11,19	12,55	14,23	15,10	-	-
	355	1,5	6,69	11,56	12,95	14,70	15,59		
		≥3	6,90	11,92	13,36	15,16	16,09		
		1,2	8,77	14,76	16,29	17,75	, –	-	-
	450	1,5	9,05	15,24	16,82	18,33			
		≥3	9,34	15,72	17,35	18,91			
Γ (6000)	400	1,2	12,25	19,75	21,46	22,68	_	_	_
(3150		1,5	12,64	20,40	22,16	23,42			
15000)		≥3	13,04	21,04	22,86	24,16			
		1,2	20,27	31,62	33,21	_	_	_	_
	560	1,5	20,93	32,65	34,30				
		≥3	21,59	33,68	35,38				
		1,2	27,23	39,44	38,90	_	_	_	_
	710	1,5	28,12	40,73	40,17				
		≥3	29,01	42,02	41,44				
Д (7100)		1,2	24,07	31,62	33,21	_	_	_	_
(4500	560	1,5	24,85	32,65	34,30				
18000)		≥3	25,64	33,68	35,38				
		1,2	34,05	39,44	38,90	_	_	_	_
	710	1,5	35,17	40,73	40,17				
		≥3	36,28	42,02	41,44				
			20,20	,	,	l			

Окружная скорость ремня υ, м/с:

$$v = \omega_1 \cdot d_1 / 2 \cdot 10^3 < [v], \tag{3.17}$$

где [υ] допускаемая окружная скорость ремня (определяют по табл. 11).

Диаметр ведомого шкива d_2 , мм:

$$d_2 = i_1 d_1 (1 - \varepsilon), \tag{3.18}$$

где ϵ – коэффициент скольжения, ϵ = 0,01...0,02; для передач с регулируемым натяжением ϵ = 0,01.

Межосевое расстояние a (мм) рекомендуется определять по формуле:

$$a = cd_2 \tag{3.19}$$

где c – коэффициент, зависящий от передаточного отношения i.

i	1	2	3	4	5
С	1,5	1,2	1	0,95	0,9

Значения высоты клинового ремня T_0 и площади сечения ремня A (мм²) приведены в табл. 13 в зависимости от типа сечения ремня.

Таблица 13

Геометрические параметры клиновых ремней

Сечение ремня	О	A	Б	В	Γ	Д	Е
Высота ремня T_0 , мм	6	8	10,5	13,5	19,0	23,5	30,0
Площадь сечения ремня A , мм ²	47	81	138	230	475	695	1170

Расчетная длина ремня L, мм:

$$L = 2a + 0.5\pi (d_1 + d_2) + \frac{(d_2 - d_1)^2}{4a}$$
 (3.20)

Стандартный ряд длин: 400, 450, 500, 630, 710, 800, 900, 1000, 1120, 1250, 1400, 1600, 1800, 2000, 2240, 2500, 2800, 3150, 3550, 4000, 4500, 5000, 5600, 6300, 7100, 8000, 9000, 10000, 11200, 14000, 16000, 18000. Длина ремня должна иметь значение, близкое к Γ OCT.

Уточненное межосевое расстояние a, мм:

$$a = \frac{2l - \pi(d_2 + d_1) + \sqrt{[2l - \pi(d_2 + d_1)]^2 - 8(d_2 - d_1)^2}}{8}$$
 (3.21)

Частота пробега ремня в 1 с:

$$v = \frac{\upsilon \cdot 10^3}{L} \tag{3.22}$$

Если v > [v] = 10...20 с⁻¹, то необходимо увеличить диаметры шкивов или длину ремня.

Угол обхвата меньшего шкива ремнем:

$$\alpha_1 = 180 - \frac{57 \cdot (d_2 - d_1)}{a} \ge 120^0$$
 (3.23)

Число ремней необходимое для передачи заданной мощности:

$$z = \frac{PC_p}{P_0 C_L C_\alpha C_z}; (3.24)$$

где P_0 – допускаемая мощность для передачи одним ремнем кВт, (см. табл. 12); $C_{\rm L}$ – коэффициент влияния длины ремня (см. табл. 14); $C_{\rm p}$ – коэффициент режима работы (см. табл. 8); $C_{\rm \alpha}$ - коэффициент угла обхвата (см. табл. 7); $C_{\rm z}$ – коэффициент, зависящий от количества ремней в передаче

Z	23	46	>6
C_z	0,95	0,90	0,85

На практике число ремней ограничивают z ≤ 8. Если число ремней в расчете превышает допустимое, то необходимо увеличить диаметры шкивов или выбрать большее сечение ремня.

Сила предварительного натяжения ремня F_0 , H:

$$F_0 = zA\sigma_0 \tag{3.25}$$

где $\sigma_0 = 1,2...1,5$ МПа — начальное напряжение в ремне; A — площадь сечения ремня (см. табл. 13); z — число ремней.

Сила, действующая на вал Q, H:

$$Q = 2F_0 \cdot \sin(\alpha/2) \tag{3.26}$$

Максимальная начальная сила Q_{max} , действующая на вал, H:

$$Q_{\text{max}}=1,5Q$$

Рабочий ресурс передачи, ч:

$$H_0 = \frac{N_{OU}L\left(\frac{\sigma_{-1}}{\sigma_{\text{max}}}\right)}{60\pi d_1 n_1} C_i C_H \le [H_0]$$
(3.27)

 H_0 = 5000; 2000; 1000 ч соответственно при легком, среднем и тяжелом режиме работы; $N_{\text{оц}}$ – базовое число циклов (табл. 15).

Таблица 14 **Значения С**_L для клиновых ремней

Длина			Сечени	е ремня		
ремня $L_{ m p}$	O	A	Б	В	Γ	Д
400	0,79					
500	0,81					
560	0,82	0,79				
710	0,86	0,83				
900	0,92	0,87	0,82			
1000	0,95	0,90	0,85			
1250	0,98	0,93	0,88			
1500	1,03	0,98	0,92			
1800	1,06	1,01	0,95	0,86		
2000	1,08	1,03	0,98	0,88		
2240	1,10	1,06	1,00	0,91		
2500	1,30	1,09	1,03	0,93		
2800		1,11	1,05	0,95		
3150		1,13	1,07	0,97	0,86	
4000		1,17	1,13	1,02	0,91	
4750			1,17	1,06	0,95	0,91
5300			1,19	1,08	0,97	0,94
6300			1,23	1,12	1,01	0,97
7500				1,16	1,05	1,01
9000				1,21	1,09	1,05
10000				1,23	1,11	1,07

Таблица 15 **Базовое число циклов N_{\text{оц}}**

Сечение ремня	O, A	Б, В, Г	Д, Е
Базовое число	$4,6.10^{6}$	$4,7 \cdot 10^6$	$2,5\cdot10^{6}$
циклов $N_{ m ou}$	·		

Выбор материала шкивов для клиноременной передачи производится так же, как и для плоскоременной.

Расчет конструктивных элементов шкивов приведен в табл. 16, характерные размеры шкивов – табл. 17.

Расчет клиноременных шкивов

Параметры (рис. 4)	Расчетная формула или указания к выбору размера
Расчетные диаметры <i>d</i> , мм	(3.16), (3.18)
Размеры профиля канавок, мм р R e e0	табл. 17 табл. 17 табл. 17 табл. 17
Диаметры, мм наружные d_a внутренние d_f Ширина шкивов B , мм	$d_{ m a} = d + 2e$ $d_{ m f} = d_{ m f} - 2e$ $B = (z-1)p + 2R$

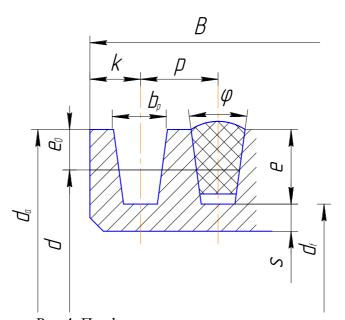


Рис.4. Профиль клиноременного шкива

Таблица 17 Основные размеры клиноременных шкивов (ГОСТ 20889-80, ГОСТ 20898-80)

Параматруу (ам. рука 2)		Сечение ремня								
Параметры (см. рис. 3)	О	A	Б	В	Γ	Д	Е			
Шаг p , мм	12	16	20	26	37,5	44,5	58			
Размер r , мм	8	10	12,5	17	24	29	38			
Высота е, мм	10	12,5	16	21	28,5	34	43			
Размер e_0 , мм	2,5	3,5	5	6	8,5	10	12,5			
Толщина обода S , мм	5,5	6	7,5	10	12	15	18			
Расчетная ширина $b_{\rm p}$, мм	8,5	11	14	19	-	-	-			
Угол профиля канавки ф, град.			Расчетный д	иаметр меньше	го шкива, мм					
34	6371	90112	125160	200	-	-	-			
36	80100	125160	180224	224315	315450	500560	-			
38	112116	180400	250500	355360	500900	6301120	8001140			
40	≥180	≥450	≥560	≥710	≥1000	≥1250	≥1600			

3.3 Расчет цепной передачи

Исходные данные (см. рис. 1 схема II):

- мощность ведомой звездочки P_2 кВт;
- момент на ведомой звездочке T_2 , $H \cdot M$;
- угловая скорость ведомого вала $\omega_2 c^{-1}$;
- передаточное отношение i_2 .

В зависимости от передаваемой передачей мощности по табл. 18 выбирают тип цепи (втулочная, роликовая).

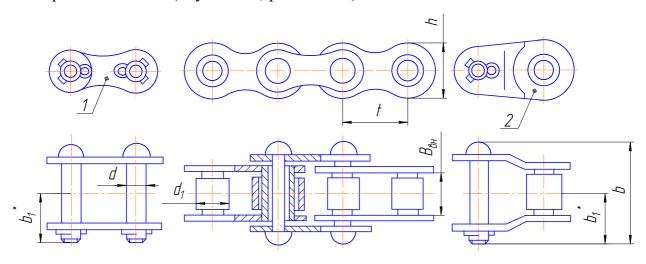


Рис. 5. Геометрические размеры однорядной цепи (ГОСТ 13568-75).

Число зубьев ведущей звездочки выбирают по табл. 19. В соответствии с передаточным отношением определяется число зубьев ведомой звездочки:

$$z_2=z_1\cdot i$$
.

Число зубьев ведомой звездочки не должно превышать 120.

Таблица 19 **Рекомендуемое число зубьев ведущей звездочки** *z*₁

	Число зубье	в ведущей звез	дочки z_1 при π	ередаточном			
Цепь		отношении і					
	12	24	46	> 6			
Роликовая, втулочная	3228 2520 1816 1412						

Таблица 18 Приводные роликовые цепи по ГОСТ 13568-75* (см. рис.5)

Цепь приводная роликовая однорядная ПР	t, mm	$B_{ m BH}$, мм	<i>d</i> , мм	d_1 , мм	<i>h</i> , мм	B, mm	Разрушаю щая нагрузка F_{p} , кН	Масса 1м цепи <i>q</i> , кг/м	A, mm ²
ПР-8-460	8,00	3,00	2,31	5,00	7,5	4,77	4,60	0,20	11
ПР-9,525-910	9,525	5,72	3,28	6,35	8,5	8,53	9,10	0,45	28,1
ПР-12,7-900-1	12,7	2,4	3,66	7,75	10,0	4,9	9,00	0,30	17,9
ПР-12,7-900-2	12,7	3,30	3,66	7,75	10,0	5,80	9,00	0,35	21
ПР-12,7-1820-1	12,7	5,40	4,45	8,51	11,8	8,90	18,20	0,65	39,6
ПР-12,7-1820-2*	12,7	7,75	4,45	8,51	11,8	11,3	18,20	0,75	50
ПР-15,875-2270-1 ПР-	15,875	6,48	5,08	10,16	14,8	10,78	22,70	0,80	54,8
15,875-2270-2*	15,875	9,65	5,08	10,16	14,8	13,95	22,70	1,0	71
ПР-19,05-3180*	19,05	12,70	5,96	11,91	18,2	17,75	31,80	1,9	105,8
ПР-25,4-5670*	25,40	15,88	7,95	15,88	24,2	22,61	56,70	2,6	179,7
ПР-31,75-8850*	31,75	19,05	9,55	19,05	30,2	27,46	88,50	3,8	262
ПР-38,1-12700*	38,1	25,4	11,1	22,23	36,2	35,46	127,00	5,5	394
ПР44,45-17240*	44,45	25,4	12,70	25,70	42,4	37,19	172,40	7,5	473
ПР-50,8-22680*	50,8	31,75	14,29	25,58	48,3	45,21	226,80	9,7	646

^{*}данные марки цепей могут быть двухрядными, для них значение проекции опорной поверхности A удваивается.

Коэффициент эксплуатации передачи K_9 определяют по формуле:

$$K_9 = K_{\mathrm{I}} K_{\mathrm{a}} K_{\mathrm{H}} K_{\mathrm{p}} K_{\mathrm{cM}} K_{\mathrm{II}} \tag{3.28}$$

где K_{π} – динамический коэффициент, при спокойной нагрузке $K_{\pi}=1$, ударной $K_{\rm A}$ =1,25...2,5 (в зависимости от интенсивности); $K_{\rm a}$ – коэффициент зависящий от межосевого расстояния, при $a = (30...50)t K_a = 1$, при $a \le 25t$, $K_a=1,25; K_H-$ коэффициент угла наклона передачи $\gamma \leq 60^\circ$ (угол наклона центров звездочек) $K_{\rm H} = 1$, при $\gamma > 60^{\circ}~K_{\rm H} = 1,25$; $K_{\rm p} - {\rm коэффициент}$, зависящий от способа регулирования натяжения цепи, при автоматическом регулировании $K_p = 1$, при периодическом $K_p = 1,25$; K_{cm} – зависит от вида смазывания передачи ($K_{cm} = 0.8$ при погружении в масляную ванну или при $K_{cM} = 1,3...1,5$ смазывании; при периодическом циркуляционном смазывании); $K_{\rm II}$ – коэффициент, зависящий от количества смен, $K_{\rm II}$ = 1, $K_{\rm n} = 1,25, K_{\rm n} = 1,5$ соответственно при односменном, двух- и трехсменном графике работы.

Шаг цепи определяется из условия износостойкости шарниров, мм:

$$t \ge 28 \cdot \sqrt[3]{\frac{T_3 K}{z_1 [q] z_p}}; (3.29)$$

где $z_{\rm p}$ — число рядов цепи; [q] — допускаемое давление в шарнирах цепи, МПа (табл. 20).

Так как в выражение (3.38) входят взаимосвязанные величины [q] и t (табл. 20), то принимают предварительное значение [q] в соответствии с ориентировочным значением t, округляют его до стандартного значения (ближайшего большего).

Таблица 20

Допускаемое давление в шарнирах роликовых и втулочных цепей [q], МПа

Шаг цепи <i>t</i> ,	Угловая скорость меньшей звездочки ω_3 , c^{-1}							
MM	<5,27	21	42	63	84	105	126	168
12,715,875	34,3	30,9	28,1	25,7	23,7	22,0	20,6	18,1
19,0525,4	34,3	29,4	25,7	22,9	20,6	18,6	17,2	14,7
31.7538.1	34,3	28,1	23,7	20,6	18,1	16,3	14,7	-
44,4550,8	34,3	25,7	20,6	16,3	14,7	-	-	-

Скорость и цепи (средняя), м/с:

$$v = \frac{n_2 z_1 t}{60 \cdot 1000} \tag{3.30}$$

Окружная сила, F_t передаваемая цепью, H:

$$F_{t} = \frac{P_{2}}{D}, \tag{3.31}$$

где P_2 – мощность передаваемая цепной передачей, B_T .

Допускаемая окружная сила $[F_t]$, H:

$$[F_t] = A [q], \tag{3.32}$$

где A = dB — проекция опорной поверхности шарнира (см. табл. 18); d — диаметр валика; B — длина втулки.

Расчет цепи на износостойкость шарниров, Н:

$$F_{t} \le [F_{t}]/K_{s}. \tag{3.33}$$

Если условие (3.42) не выполняется, то необходимо выбрать цепь с большим шагом или увеличить ее рядность и повторить расчет. Если расчетное значение окружной силы F_t значительно меньше допускаемой $[F_t]$, то в целях уменьшения массы и стоимости цепи, следует просчитать цепь меньшего шага.

Межосевое расстояние a, мм:

$$a = 40t.$$
 (3.34)

Число звеньев цепи:

$$z_3 = 2a/t + (z_1 + z_2)/2 + [(z_2 - z_1)/2\pi]^2 t/a.$$
 (3.35)

Значение z_3 необходимо округлить до целого числа.

Расчетная длина цепи L, мм

$$L = z_3 t. (3.36)$$

Уточняют межосевое расстояние, мм:

$$a = \frac{t}{4} \left(z_3 - \frac{z_2 + z_1}{2} + \sqrt{\left(z_3 - \frac{z_2 + z_1}{2} \right)^2 - 8\left(\frac{z_2 - z_1}{2\pi} \right)^2} \right)$$
 (3.37)

Для свободного провисания цепи уменьшим межосевое расстояние на 0,004 %.

Число ударов цепи в 1 с:

$$v = 2z_1 \omega_3 / \pi z_3 \le [v] = 508/t \tag{3.38}$$

Силы, действующие на цепь, Н:

- окружная F_t определена по формуле (3.42);
- центробежная:

$$F_{\upsilon}=q\upsilon^2$$
;

• от провисания цепи:

$$F_f = k_f qga$$

где: a — межосевое расстояние; k_f — коэффициент провисания, зависящий от угла γ наклона линии центров к горизонту, k_f = 1+ 5cos² γ . Для определения k_f необходимо задаться углом γ ; g = 9,81 — ускорение свободного падения, м/с.

Коэффициент запаса прочности *s*:

$$s = F_{p}/(F_{t}K_{\pi} + F_{v} + F_{f}) \ge [h]$$
 (3.39)

где $F_{\rm p}$ — разрушающая нагрузка, зависящая от шага цепи, Н (см. табл. 18); $K_{\rm д}$ — коэффициент динамической нагрузки; [h] — допускаемый коэффициент запаса прочности;

$$[s] \cong 7 + 2,4\omega_3 t \cdot 10^{-3}$$
.

Сила $F_{\rm B}$, действующая на валы и опоры, H:

$$F_{\rm B} = F_t + 2F_f. \tag{3.40}$$

Для изготовления звездочек используются углеродистые и легированные стали, литье из стали и чугуна, пластмассы. Термообработка для ведущей звездочки должна быть лучше, чем для ведомой.

Расчетные формулы конструктивных параметров звездочек (рис. 6) приведены в табл. 21.

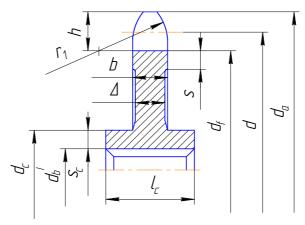


Рис. 6. Профиль звездочки

Таблица 21 Формулы для определения основных параметров звездочек

Параметры	Расчетная формула
Диаметры, мм:	
делительный d	$d = t/\sin(180/z)$
окружности выступов d_a	$d_a = t[0.5 + ctg(180/z)]$
окружности впадин d_f	$d_{f} = d - 2r$
Радиус, мм:	
впадин <i>r</i>	$r = 0.5025d_1 + 0.05$
закругления зуба r_I	$r_{\scriptscriptstyle 1}=1.7d_{\scriptscriptstyle 1}$
Расстояние от вершины зуба до линии	$h = 0.8d_{\perp}$
центров закругления h , мм	• •
Толщина, мм	
обода <i>S</i>	S = 0.5t
диска звездочки Δ	$\Delta = 0.7t$
Ширина зуба звездочки b , мм	b = 0.93B - 0.15
Длина ступицы l_c , мм	$l_{\rm c}=(23)d_{\rm B}$
Диаметры ступицы $d_{\rm c}$, мм	$d_c = d_{\rm B}' + 2S_c$
Толщина ступицы S_{c} , мм	$S_{\rm c} = (0,82,5)t$

П р и м е ч а н и е : $d_{\scriptscriptstyle \rm B}$ — диаметр вала, $d_{\scriptscriptstyle \rm I}$ — диаметр ролика (см. табл. 18)

4. РАСЧЕТ ЗАКРЫТОЙ ЦИЛИНДРИЧЕСКОЙ ПЕРЕДАЧИ

Исходные данные (рис. 1, схема I);

- мощность P_1 , кВт, и момент быстроходного вала передачи, T_1 Н·м;
- угловая скорость шестерни ω_1 , c^{-1} ;
- передаточное отношение i_1 ;
- циклограмма нагружения (рис. 7).

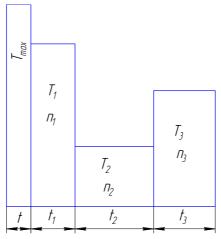


Рис. 7. Циклограмма нагружения

4.1. Выбор материала шестерни и колеса

Основным материалом для изготовления зубчатых колес является сталь, которая подвергается дальнейшей термообработке.

Данные к выбору материала для колеса и для шестерни приведены в табл. 22, 23. Для колеса и шестерни предпочтительнее выбирать одинаковый материал, твердость поверхности зубьев обеспечивается соответствующей термообработкой. Для шестерни твердость поверхности зубьев на 20...30 единиц по Бринеллю выше, чем для колеса.

В индивидуальном и мелкосерийном производстве, а также для редукторов общего назначения зубчатые колеса не подвергаются поверхностному упрочнению; после окончательной термообработки — улучшении или нормализации — твердость зубьев мало изменяется по сечению и, как правило, не превышает НВ 350. Зубчатые колеса изготавливают из качественных углеродистых и легированных сталей с содержанием углерода 0.35-0.5%.

При выборе термообработки необходимо учитывать следующие рекомендации:

- нормализация применяется в редукторах больших размеров, индивидуальном производстве, малонагруженных передачах;
- улучшение в редукторах средних размеров и передачах с небольшими и средними нагрузками;

- закалка в тихоходных передачах низкой точности. Сочетание шестерни, закаленной ТВЧ, и улучшенного колеса дает большую нагрузочную способность, чем улучшенная пара с той же твердостью колеса;
- пламенная закалка в тяжелом машиностроении, в передачах с большими модулями, низкой точности, в индивидуальном производстве;
- объемная закалка в мелких зубчатых колесах, работающих при малых и средних скоростях;
- цементация в высоконагруженных передачах малых и средних размеров разных степеней точности;
- нитроцементация в небольших зубчатых колесах крупносерийного и массового производства;
- азотирование в быстроходных точных передачах, работающих без ударов.

Таблица 22 Механические свойства сталей, применяемых при изготовлении зубчатых колес

Марка стали	Диаметр заготовки, мм	Предел прочности о _в , МПа	Предел текучести о _т , МПа	Средняя твердость НВ	Термообработка
45	100500	570	290	190	нормализация
45	< 90	780	440	230	улучшение
	90120	730	390	210	
	>120	690	340	200	
30ХГС	<140	1020	840	260	улучшение
	>140	930	740	250	
40X	<120	930	690	270	улучшение
	120160	880	590	260	
	>160	830	540	245	
40XH	<150	930	690	280	улучшение
	150180	880	590	265	
	>180	835	540	250	
40Л		520	290	160	нормализация
45Л		540	310	180	
35ГЛ		590	340	190	улучшение
35ХГСЛ		790	590	220	

Твердость и рекомендуемая термообработка для сталей,
применяемых при изготовлении зубчатых колес

Марка стали	Твердость HRC	Термообработка	
30ΧΓC, 35ΧM, 40X, 40ΧH	4555	закалка	
12XH3A, 18X2H4MA, 20XM	5063	цементация, закалка	
20ΧΓΜ, 25ΧΓΤ, 30ΧΓΤ, 35Χ	5663	нитроцементация	
30X2MIOA, 40X	5663	азотирование	
40X, 40XH, 35XM	4563	поверхностная закалка с	
		нагревом ТВЧ	

4.2. Расчет допускаемых напряжений

Допускаемые напряжения $[\sigma_H]$, рассчитывают по формуле:

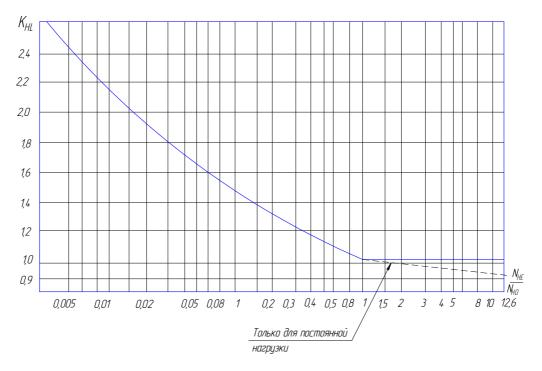
$$\left[\sigma_{H}\right] = \frac{\sigma_{H \lim b} K_{HL}}{\left[S_{H}\right]}, \tag{4.1}$$

где σ_{Hlimb} – предел контактной выносливости при базовом числе циклов (табл. 24); $[S_{\text{H}}]$ – коэффициент безопасности, при нормализации, улучшении и объемной закалке $[S_{\text{H}}] = 1,1...1,2$; при поверхностном упрочнении $[S_{\text{H}}] = 1,2...1,3$, K_{HL} – коэффициент долговечности, определяется по рис. 8 в зависимости от отношения $N_{\text{HE}}/N_{\text{HO}}$ (при $N_{\text{HE}}/N_{\text{HO}} > 1$, $K_{\text{HL}} = 1$); N_{HO} – базовое число циклов напряжения в зубьях (см. рис. 8); N_{HE} – эквивалентное число циклов напряжений в зубьях, соответствующее рабочему числу циклов передачи с постоянным режимом нагружения:

$$N_{HE} = 60cnt$$

где с — число одинаковых зубчатых колес, сцепляющихся с рассчитываемым зубчатым колесом; n — частота вращения зубчатого колеса, мин⁻¹; t — продолжительность работы передачи, ч.

При работе с переменными нагрузками (см. рис 7).


$$N_{HE} = \frac{60c}{T_{max}^{3}} \cdot \left(T_{max}^{3} t n + T_{1}^{3} t_{1} n_{1} + \dots + T_{i}^{3} t_{i} n_{i}\right)$$
(4.2)

где T_{\max} — максимальный крутящий момент, передаваемый зубчатым колесом за время t при частоте вращения колеса $n; T_2, ..., T_i$ — передаваемые крутящие моменты, время $t_1, t_2, ..., t_i$ при частоте вращения колеса $n_1, n_2, ..., n_i$.

Для передач с различной твердостью шестерни и колеса:

$$[\sigma_H] = 0.45([\sigma_{H1}] + [\sigma_{H2}]) \le 1.23[\sigma_H]_{min}$$
 (4.3)

где $[\sigma_{H1}]$, $[\sigma_{H2}]$ — допускаемые контактные напряжения соответственно для шестерни колеса.

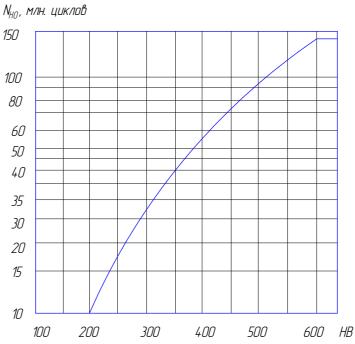


Рис. 8. Определение K_{HL} и N_{HO}

Таблица 24

Способ термической обработки зубьев	Средняя твердость НВ	Сталь	σ _{Hmin} , ΜΠα
Нормализация или	HB<350	Углеродистая и	2HB+70
улучшение		легированная	
Объемная закалка	HRC 38 HRC 50		18 HRC+150
Поверхностная закалка	HRC 40 HRC 50		17 HRC+200
Цементация и	HRC>56	Легированная	23 HRC
нитроцементация			
Азотирование	HV 550750		1050

Предел контактной выносливости при базовом числе циклов

4.3. Расчетные коэффициенты

Коэффициент отношения ширины венца к диаметру шестерни:

$$\psi_{bd} = 0.5 \psi_{ba} (i_2 + 1); \tag{4.4}$$

где ψ_{ba} – коэффициент ширины венца зубчатого колеса (табл. 25).

Коэффициент неравномерности нагрузки по ширине зуба $K_{H\beta}$ определяется из табл. 25 (при постоянной нагрузке $K_{H\beta}$ = 1) или из табл. 26.

Таблица 25

Коэффициенты ува

Расположение шестерни	Твердость поверхности	Ψba
относительно опор	зубьев НВ (HRC)	,
Консольное	≤350	0,25
	>350 (>40)	0,2
Несимметричное	≤350	0,315; 0,4
	>350 (>40)	0,25; 0,315
Симметричное	≤350	0,315; 0,4; 0,5
	>350 (>40)	0,315; 0,4

Расположение	Твер-	1 thp 1 P 1 4 0d / 1 1 P 1 P 1 4 0d							
шестерни относительно опор	дость НВ	0,2	0,4	0,6	0,8	1,2	1,6		
Консольное, опоры	≤350	1,08	1,17/1,37	1,28/1,64	_	_	_		
_	>350	/1,16	1,44/1,70	_	_	_	_		
шарикоподшипники		1,22/1,33							
Консольное,	≤350	1,06/1,10	1,12/1,22	1,19/1,38	1,27/1,57	_	_		
опоры –	>350	1,1/1,2	1,25/1,44	1,451,71	_	_	_		
роликоподшипники									
Несимметричное	≤350	1,01/1,01	1,02/1,01	1,03/1,05	1,04/1,07	1,07/1,14	1,11		
	>350	1,01/1,02	1,02/1,02	1,041,08	1,07/1,14	1,16/1,20	1,26		
Симметричное	≤350	1,03/1,05	1,05/1,10	1,071,17	1,12/1,25	1,19/1,42	1,28		
	>350	1,06/1,09	1,12/1,18	1,201,30	1,29/1,43	1,48/1,73	_		

Значение коэффициента $K_{\text{н}\beta}$ / $K_{\text{F}\beta}$ при ψ_{bd}

4.4. Межосевое расстояние зубчатой передачи

$$a_{\omega} = K_a (i+1)^3 \sqrt{T_2 K_{H\beta} / (\psi_{ba} i^2 [\sigma_H]^2)};$$
 (4.5)

где K_a = 495 — для прямозубых передач, K_a = 430 — для косозубых передач; T_2 — крутящий момент на быстроходном валу, $H \cdot M$; i — передаточное отношение зубчатой передачи.

Расчетное значение a_{ω} округляют до стандартного по ГОСТ 2185-66 (мм): 1-й ряд: 40, 50, 63, 80, 100, 125, 160, 200, 250, 315, 400, 500, 630, 800, 1000, 1250, 1600, 2000, 2500; 2-й ряд: 71, 90, 112, 140, 180, 224, 280, 355, 450, 560, 710, 900, 1120, 1400, 1800, 2240. Предпочтительнее 1-й ряд.

4.5. Модуль зацепления

Модуль зацепления (нормальный) m, мм, составляет:

$$m = (0,01...0,02)a_{\omega_0} \tag{4.6}$$

Расчетное значение модуля округляют до значений СТ СЭВ 310-76: 1-й ряд: 1,0; 1,25; 1,5; 2,0; 2,5; 3,0; 4,0; 5,0; 6,0; 8,0; 10,0; 12,0; 16,0; 20,0; 25,0; 32,0; 2-й ряд: 1,125; 1,375; 1,75; 2,25; 2,75; 3,5; 4,5; 5,5; 7,0; 9,0; 11,0; 14,0; 18,0; 22,0; 28,0; 36,0. Предпочтительнее 1-й ряд.

4.6. Число зубьев шестерни и колеса

Для прямозубой передачи:

$$z_1 = z_{\Sigma}/(u+1);$$
 $z_2 = z_{\Sigma} - z_1;$

Для косозубой передачи:

$$z_1 = z_{\Sigma} \cos \beta / (u+1);$$
 $z_2 = z_{\Sigma} - z_1,$

где $z_{\Sigma}=2a_{\omega}/m$ — суммарное число зубьев (прямозубая передача); для косозубой передачи: $z_{\Sigma}=2a_{\omega}\cos\beta/m$.

Угол наклона зубьев $\beta = 8...15^{\circ}$.

При определении числа зубьев шестерни необходимо помнить, что предпочтительнее нечетное число зубьев.

4.7. Фактическое передаточное число

Фактическое передаточное число i рассчитывают по формуле:

$$i = z_2 / z_1,$$
 (4.7)

4.8. Основные геометрические размеры зубчатых колес

Формулы для расчета основных параметров зубчатых колес приведены в табл. 27.

Таблица 27

Основные параметры зубчатых колес, мм

Параметры	Шестерня	Колесо зубчатое
Делительный диаметр:		
прямозубая передача	$d_1 = z_1 m$	$d_2 = z_2 m$
косозубая передача	$d_1 = z_1 m / \cos \beta$	$d_2 = z_2 m / \cos \beta$
Диаметр вершин зубьев	$d_{a1}=d_1+2m$	$d_{a2} = d_2 + 2m$
Диаметры впадин	$d_{f1}=d_1-2,5m$	$d_{f2} = d_2 - 2,5m$
Ширина венца колеса	$b_1 = b_2 + (25)$	$b_2 = \psi_{ba} a_{\omega}$

4.9. Окружная скорость и точность зубчатой передачи

Окружная скорость и точность зубчатой передачи 9, м/с:

$$\mathcal{G} = \frac{\omega_1 d_1}{2 \cdot 10^3};\tag{4.8}$$

где ω_1 – угловая скорость шестерни, с⁻¹.

Наибольшее распространение имеют 6-я, 7-я, 8-я и 9-я степени точности (табл. 28): 6-я степень назначается высокоточным, скоростным передачам; 7-я — передачам нормальной точности, работающими с умеренными нагрузками на высоких скоростях; 8-я — передачам общего машиностроения, 9-я — тихоходным передачам машин низкой точности. В передачах сельскохозяйственного назначения, как правило, выбирается 7-я степень точности.

4.12. Силы, действующие в зацеплении

Окружная сила F_t , H:

$$F_{\rm t} = 2 \cdot 10^3 \ T_2/d_1$$
.

Радиальная F_r , H:

• для цилиндрических прямозубых передач:

$$F_r = F_t \operatorname{tg}\alpha_{\omega}$$
;

• для цилиндрических косозубых передач:

$$F_r = F_t tg\alpha_0 / \cos\beta$$
,

где α_{ω} – угол зацепления α_{ω} =20°.

Осевая сила F_a , H (только для цилиндрических косозубых передач):

$$F_a = F_t \operatorname{tg} \beta$$
.

4.11. Расчетные коэффициенты динамической нагрузки

Значения коэффициентов K_{Hv} и K_{Fv} приведены в табл. 28.

Таблица 28 Значения коэффициентов $K_{H\upsilon}$ и $K_{F\upsilon}$

Степень	Твердость		Ок	ружная ск	орость υ,	м/с	
точности	поверхности зубьев	1	2	4	6	8	10
1	2	3	4	5	6	7	8
		Значения	я коэффиц	иента K_{H_0}			
6-я	HB ₂ ≤350	1,03	1,06	1,12	1,17	1,23	1,28
		1,01	1,02	1,03	1,04	1,06	1,07
	HRC ₂ ≥40	1,02	1,04	1,07	1,1	1,15	1,18
		1,00	1,00	1,02	1,02	1,03	1,04
7-я	HB ₂ ≤350	1,04	1,07	1,14	1,21	1,29	1,36
		1,02	1,03	1,05	1,06	1,07	1,08
	HRC ₂ ≥40	1,03	1,05	1,09	1,14	1,19	1,24
		1,00	1,01	1,02	1,03	1,03	1,04
8-я	HB ₂ ≤350	1,04	1,08	1,16	1,24	1,32	1,4
		1,01	1,02	1,04	1,06	1,07	1,08
	HRC ₂ ≥40	1,03	1,06	1,1	1,16	1,22	1,26
		1,01	1,01	1,02	1,03	1,04	1,05
9-я	HB ₂ ≤350	1,05	1,1	1,2	1,3	1,4	1,5
		1,01	1,03	1,05	1,07	1,09	1,12
	HRC ₂ ≥40	1,04	1,07	1,13	1,2	1,26	1,32
		1,01	1,01	1,02	1,03	1,04	1,05
		Значения	я коэффиц	иента К _{F0}		•	•
6-я	HB ₂ ≤350	1,06	1,13	1,26	1,40	1,58	1,67
		1,02	1,05	1,10	1,15	1,2	1,25
	HRC ₂ ≥40	1,02	1,04	1,08	1,11	1,14	1,17
		1,01	1,02	1,03	1,04	1,06	1,07
7-я	HB ₂ ≤350	1,08	1,16	1,33	1,5	1,67	1,8
		1,03	1,06	1,11	1,16	1,22	1,27
	HRC ₂ ≥40	1,03	1,05	1,09	1,13	1,17	1,22
		1,01	1,02	1,03	1,05	1,07	1,08
8-я	HB ₂ ≤350	1,10	1,20	1,38	1,58	1,78	1,96
		1,03	1,06	1,11	1,17	1,23	1,29
	HRC ₂ ≥40	1,04	1,06	1,12	1,16	1,21	1,26
		1,01	1,02	1,03	1,05	1,07	1,08
9-я	HB ₂ ≤350	1,13	1,28	1,5	1,77	1,98	1,25
		1,04	1,07	1,14	1,21	1,28	1,35
	HRC ₂ ≥40	1,04	1,07	1,14	1,21	1,27	1,34
		1,01	1,02	1,04	1,06	1,08	1,09
При	мечание: в числи	теле привел	ены значени	я для прямо	зубых колес	: в знаменато	еле — лля

Примечание: в числителе приведены значения для прямозубых колес; в знаменателе – для косозубых.

4.12. Проверка по контактным напряжениям

$$\sigma_{H} = Z_{H} Z_{M} Z_{\varepsilon} \frac{i \pm 1}{i} \sqrt{\frac{10^{3} T_{2} K_{H\alpha} K_{H\beta} K_{H\nu} (i \pm 1)}{2a_{\omega}^{3} \psi_{ba}}} \le [\sigma_{H}], \tag{4.9}$$

знак «+» — при внешнем зацеплении, «—» — при внутреннем; $Z_H = \sqrt{2/\sin 2\alpha_\omega}$ — коэффициент, учитывающий форму сопряженных поверхностей зубьев (для нормальных прямозубых колес при $\alpha_\omega = 20^\circ~Z_H = 1,76$); $Z_M = 275~\mathrm{M\Pi a}^{1/2}$ — коэффициент, учитывающий механические свойства материала колес (сталь); $Z_\varepsilon \approx 1$ — коэффициент суммарной длины контактных линий для прямозубой передачи; для косозубых передач $z_\varepsilon = \sqrt{1/\varepsilon_\alpha}$; ε_α — коэффициент торцового перекрытия:

$$\varepsilon_{\alpha} = \left[1,88 - 3,2 \left(\frac{1}{z_1} + \frac{1}{z_2} \right) \right] \cos \beta ;$$

 K_{Ho} — коэффициент динамической нагрузки (см. табл. 28); $K_{H\alpha}$ — коэффициент неравномерности распределения нагрузки между зубьями (см. табл. 29); $K_{H\beta}$ — коэффициент неравномерности распределения нагрузки по длине контактной линии (см. табл. 25); ψ_{ba} — коэффициент ширины венца зубчатого колеса (см. табл. 25, 26).

Размерность: $T_2 - [H \cdot M]$; $a_{\omega} - [MM]$; σ_H , $[\sigma_H] - [M\Pi a]$.

Таблица 29 Значение коэффициента $\mathbf{K}_{\mathbf{H}\alpha}$ для косозубых передач

Степень	Окружная скорость υ, м/с								
точности	< 1	5	10	15	20				
6	1	1,02	1,03	1,04	1,05				
7	1,02	1,05	1,07	1,10	1,12				
8	1,06	1,09	1,13	-	-				
9	1,1	1,16	-	_	_				

Для прямозубых передач $K_{H\alpha} = 1$

Расчетные напряжения не должны превышать допустимые более чем на 5%, в противном случае необходимо изменить материал колес и термообработку.

4.13. Коэффициенты, учитывающие форму зуба

Коэффициенты Y_{F1} и Y_{F2} , учитывающие форму зуба, для зубчатых колес, выполненных без смещения (x = 0) приведены в табл. 30.

Таблица 30 **Значения коэффициентов, учитывающих форму зуба**

Z	17	20	22	24	26	28	30
$Y_{ m F}$	4,26	4,07	3,98	3,92	3,88	3,81	3,79
Z	35	40	45	50	65	>80	Рейка
$Y_{ m F}$	3,75	3,70	3,66	3,65	3,62	3,60	3,63

4.14. Проверка зубьев по напряжениям изгиба.

Обычно проверяют зубья шестерни. Допускаемые напряжения изгиба:

$$\left[\sigma_{F}\right] = \frac{\sigma_{F \lim b}^{0}}{\left[S_{F}\right]} \tag{4.10}$$

где $\sigma_{F \text{lim}b}^0$ - предел выносливости (при отнулевом цикле), соответствующего базовому числу циклов $N_{FO}=4\cdot 10^6;~[S_F]=[S_F]'[S_F]''$ — коэффициент безопасности; $[S_F]'$ — коэффициент нестабильности свойств материала зубчатых колес (табл. 31); $[S_F]''$ — коэффициент, зависящий от способа получения заготовки зубчатого колеса: для поковок и штамповок $[S_F]''=1,0;$ для проката $[S_F]''=1,15;$ для литья $[S_F]''=1,3.$

Таблица 31 Значения коэффициентов предела выносливости и коэффициентов нестабильности свойств материала

	Твердостн	зубьев	σ_{-}^0		
Термическая обработка	на поверхности	в сердцевине	$\sigma_{F { m lim} b}^{ m o}$, МПа	$[S_F]'$	
Нормализация,	HB 180	1,8 HB	1,75		
улучшение					
Объемная закалка	HRC 4	500-550	1,8		
Закалка при	HRC 48-58	HRC 25-35	700	1,75	
нагреве ТВЧ					
Цементация	HRC 57-63	-	950	1,55	
Азотирование	HV 700-950	HRC 24-40	300+1,2 HRC	1,75	
			сердцевины		

4.15. Напряжение изгиба в основании ножки зуба

Напряжение изгиба в основании ножки зуба шестерни рассчитывают следующим образом:

$$\sigma_{F1} = Y_{F1}F_tK_FK_{F0} Y_{\beta} / b_1 m > [\sigma_{F1}]$$

$$(4.11)$$

где $Y_{\beta} = 1 - \beta/140$ — коэффициент, учитывающий влияние угла наклона зуба; Y_{F1} — коэффициент, учитывающий форму зуба (см. табл. 30); F_t — окружная сила, H; $K_{F\beta}$ — см. табл. 26; $K_{F\upsilon}$ — см. табл. 28; b_1 — ширина венца шестерни, мм; m — модуль зацепления, мм.

Если σ_F превышает [σ_F] более чем на 5 %, то необходимо изменить материал колес, термообработку и параметры передачи и повторить расчет.

5. РАСЧЕТ ЗАКРЫТОЙ ЧЕРВЯЧНОЙ ПЕРЕДАЧИ.

Исходные данные (см. рис. 1, схема II):

- мощность на валу червяка P_2 , кВт;
- вращающий момент на валу червячного колеса T_3 , $H \cdot M$;
- угловая скорость на валу червяка ω_2 , c^{-1} ;
- угловая скорость на валу червячного колеса ω_3 , c^{-1} ;
- передаточное отношение i_2 ;

5.1. Выбор материала червяка и колеса

Материал выбирают с учетом условий работы передачи и скорости скольжения $\upsilon_{c\kappa} \approx 4.3\omega_3 i \sqrt[3]{T_3} / 10^3$ из табл. 32.

Таблица 32 Основные механические характеристики для материалов червячных колес

Managa	Пределы		Į	Цопуска тв	И	Ско- рость	зка			
Марка материала	проч-	теку-	H	IRC < 4	RC < 45		IRC ≥ 4	скольже	Отливка	
материала	ности	чести	$[\sigma_{0\mathrm{F}}]'$	[σ _{-1F}]′	[σ _H]′	$[\sigma_{0F}]'$	[σ _{-1F}]′	$[\sigma_{\rm H}]'$	ния	Oī
	σ _в , Πа	σ _т , Πа	[O0F]	[O-IF]	[OH]	[OOF]	[0-11]	[OH]	v_{ck} , m/c	
Бр.ОФ10-1	230	140	45	30	135	55	40	168	>4	П
Бр.ОФ10-1	250	200	57	41	186	71	51	221	>4	К
Бр.ОНФ10-1	290	170	285	165	45	206	80	56	>4	К
Бр.А9Ж3Л	392	196	81	63	-	98	75	_	14	П
Бр.А9Ж3Л	490	236	85	59	-	108	83	-	14	К
БРА10Ж4Н	590	275	101	81	ı	130	98	ı	14	П
СЧ10	118	-	33	20	-	41	25	-	<2	П

Примечание: К – отливка в кокиль, П – отливка в песочную форму

При $\upsilon_{ck} = 4...30$ м/с венец червячного колеса изготавливают из оловянно-фосфорных бронз Бр.ОФ10-1, БрО10Н1Ф1 с антифрикционными

свойствами. При скорости скольжения $\upsilon_{ck} \le 4$ м/с используют более дешевые безоловянные бронзы Бр.АЖ9-4, Бр.А9Ж3Л, при условии, что твердость червяка HRC ≥ 45 . При $\upsilon_{ck} \le 2$ м/с, допускается в качестве материала для червячных колес применять чугун, а для червяка — сталь.

5.2. Коэффициент долговечности

Коэффициент долговечности при расчете на контактную прочность:

$$K_{HL} = \sqrt[8]{\frac{N_0}{N_{\Sigma}}} \tag{5.1}$$

где N_0 — базовое число циклов напряжения, N_0 = 10^7 ; N_Σ — число циклов напряжения за весь срок службы передачи (при N_Σ < 10^7 принимают N_Σ = 10^7 , при N_Σ > $25 \cdot 10^7$ принимают N_Σ = $25 \cdot 10^7$).

При постоянной нагрузке:

$$N_{\Sigma} = 60i_2t$$

где t – продолжительность работы нагруженной передачи за установленный срок службы, ч.

При переменной нагрузке:

$$N_{\Sigma} = (60/T_{\text{max}}^{m}) (T_{\text{max}}^{m} t_{n} + T_{1}^{m} t_{1} n_{1} + ... T_{i}^{m} t_{i} n_{i});$$
 (5.2)

где T_{\max} — максимальный крутящий момент передаваемый за весь период работы передачи, при частоте вращения n, мин⁻¹; T_1 , T_2 , ..., T_i — передаваемые червячным колесом моменты в течение времени t_1 , t_2 , ..., t_i , соответственно при частоте вращения n_1 , n_2 , ..., n_i ; m=4.

В качестве расчетного K_{HL} принимают, если оно находится в пределах 0,64...1,15. Меньшее либо большее значение K_{HL} округляется до крайнего значения из данного предела 0,64 или 1,15.

5.3. Допускаемые расчетные напряжения червячного колеса

Так как червяки изготавливают из более прочного материала, то расчет по контактным напряжениям и изгибу в червячных передачах проводят только по зубьям червячных колес:

$$\left[\sigma_{H}\right] = \left[\sigma_{H}\right]' K_{HL}; \left[\sigma_{0F}\right] = \left[\sigma_{0F}\right]' K_{FL}.$$

Для передач с чугунным червячными колесами $K_{FL} = 1,0$. Значения K_{FL} при бронзовом венце червячного колеса изменяются в пределах 1,0...0,543:

$$K_{FL} = \sqrt[8]{\frac{10^6}{N_{\Sigma}}}. ag{5.3}$$

5.4. Коэффициенты нагрузки

При равномерной нагрузке коэффициент неравномерности распределения нагрузки $K_{H\beta}=1,0$. При расчете червячной передачи коэффициенты $K_{H\beta}$ и $K_{F\beta}$ – равнозначимые величины, следовательно, $K_{H\beta}=K_{F\beta}=1,0$.

Коэффициенты динамической нагрузки K_{Ho} и K_{Fo} зависят от скорости скольжения $\upsilon_{c\kappa}$, (табл. 33).

Таблица 33 Значение коэффициентов $K_{H\nu}$ и $K_{F\nu}$

Степень	Скорость скольжения _{Оск} , м/с								
точности	1,5	1,53	37,5	7,512	1216	1625			
6-я	_	_	1	1,1	1,3	1,5			
7-я	1	1	1,1	1,2	_	_			
8-я	1,15	1,25	1,4	_	_	_			
9-я	1,25	_	_	_	_	_			

5.5. Число зубьев червячного колеса и витков червяка

При увеличении числа витков червяка z_1 увеличивается угол подъема витка червяка и снижается КПД передачи.

Как правило, число заходов червяка определяют из условия:

$$z_2 = z_1 i \ge z_{\min} = 26...28.$$

При выборе числа витков червяка руководствуются следующими зависимостями: $i = 8...15 \Leftrightarrow z_1 = 4$; $i = 15...30 \Leftrightarrow z_1 = 2$; $i > 30 \Leftrightarrow z_1 = 2$.

5.6. Коэффициент диаметра червяка

По ГОСТ 19672-74 допускается применение коэффициента диаметра червяка q: 1-ряд: 6,3; 8; 10; 12,5; 16,0; 20,0; 25,0; 2-ряд: 7,1; 9; 11,2; 14; 18; 22,4. Первый ряд следует предпочесть второму.

Коэффициент диаметра червяка q находится по табл. 34 или по формуле:

$$q = 0.33z_2 + 2.$$

Таблица 34 **Сочетания** *q* и *m* (ГОСТ 2144-76*)

m, mm	q						
1,6	10; 12,5;	3,15	8; 10; 12,5;	6,3	8; 10; 12,5;	12,5	8; 10; 12,5;
	16; 20		16; 20		14; 16; 20		16; 20
2	8; 10; 12,5;	4	8; 10; 12,5;	8	8; 10; 12,5;	16	8; 10; 12,5;
	16; 20		16; 20		16; 20		16
2,5	8; 10; 12,5;	5	8; 10; 12,5;	10	8; 10; 12,5;	20	8; 10; 2,5;
	16; 20		16; 20		16; 20		16; 20

5.7. Межосевое расстояние

Межосевое расстояние a_{ω} (мм) рассчитывают по формуле:

$$a_{\omega} = \left(\frac{z_{2}}{q} + 1\right)_{3}^{3} \left[\frac{170}{\frac{z_{2}}{q} \left[\sigma_{H}\right]}\right]^{3} T_{3} K_{H\beta} K_{H\nu} ; \qquad (5.4)$$

где T_3 – крутящий момент навалу червячного колеса, H·мм.

Значение расчетного межосевого расстояния округляют по ГОСТ 2144-76* (первый ряд предпочтительнее): 1-ряд: 40; 50; 63; 80; 100; 125; 160; 200; 250; 315; 400; 500 мм; 2-ряд: 140; 180; 225; 280; 355; 450 мм.

5.8. Расчетный модуль передачи.

Расчетный модуль передачи m (мм) определяют по формуле:

$$m = \frac{2a_{_{\scriptscriptstyle \omega}}}{z_{_{\scriptscriptstyle 2}} + q} \tag{5.5}$$

Значения m и q принимают по табл. 34.

5.9. Геометрические размеры передачи

Геометрические размеры передачи рассчитывают по формулам, представленным в табл. 35.

Формулы для расчета геометрических параметров передачи

Параметр	Формула					
Червяк						
Делительный диаметр	$d_1 = qm$					
Диаметр вершин витков	$d_{a1} = d_1 + 2h_{a1} = m(q+2)$					
Диаметр впадин	$d_{f1} = d_1 - 2h_{f1} = m(q - 2, 4)$					
Длина нарезанной части, при коэффициенте	при $z_1 = 12$ $b_1 = m(11 + 0.06z_2)$					
смещения равном нулю	при $z_1 = 4$ $b_1 = m(12,5 + 0,09z_2)$					
Венца червячно	ого колеса					
Делительный диаметр	$d_2 = mz_2$					
Диаметр вершин зубьев	$d_{a2} = d_2 + 2h_{a2} = m(z_2 + 2)$					
Диаметр впадин	$d_{f2} = d_2 - 2h_{f2} = m(z_2 - 2,4)$					
Наибольший диаметр колеса	$d_{a2\max} \leq d_{a2} + 6m/(z_1 + 2)$					
Ширина венца червячного колеса	при $z_1 = 12$ $b_2 \le 0.75 d_{a1}$					
	при $z_1 = 4$ $b_2 \le 0.67 d_{a1}$					

5.10. Уточняем значение межосевого расстояния

Значение межосевого расстояния уточняют следующим образом:

$$a_{\omega} = (d_1 + d_2)/2.$$
 (5.6)

5.11. Выбор условного угла обхвата червяка

Условный угол обхвата γ червяка в зависимости от q и m определяют по табл. 36.

Таблица 36

Значение угла подъема у на делительном цилиндре червяка

_		Коэффициент <i>q</i>									
z_1	8	10	12,5	14	16	20					
1	7°07′	5°43′	4°35′	4°05′	3°35′	2°52′					
2	14°02′	11°19′	9°05′	8°07′	7°07′	5°43′					
4	26°34′	21°48′	17°45′	15°57′	14°02′	11°19′					

5.12. Окружная скорость червяка

Окружную скорость υ_1 червяка рассчитывают по формуле:

$$v_1 = 0.5\omega_2 d_1$$

5.13. Скорость скольжения

Скорость скольжения υ_{ck} определяют по формуле:

$$v_{c\kappa} = v_1/cos\gamma$$
.

По скорости скольжения находят [σ_H] (табл. 37) и сравнивают его с расчетным значением [σ_H]. Отклонение от расчетного не должно превышать 5 %, в противном случае необходимо пересчитать передачу.

Назначают степень точности и уточняют значения $K_{H\upsilon}$ и $K_{F\beta}$ (см. п. 5.4.)

Таблица 37 Допускаемые контактные напряжения для червячных колес

Ma	териал	5 1 NOT									
венца		$[\sigma_H]$, МПа при скорости скольжения $\upsilon_{c\kappa}$, м/с									
червячного	червяка	0	0.25	0.5	1	2	2	1	6	0	
колеса		0	0,25	0,5	1	2	3	4	6	8	
БрА9Ж3Л	Сталь HRC>45	_	_	182	179	173	167	161	150	138	
БРА10Ж4	Сталь HRC>45	_	_	196	192	187	181	175	164	152	
СЧ15, СЧ18	Сталь 20, 20Х	184	155	128	113	84,5	_	_	_	_	
	цементованная										
СЧ10, СЧ15	Сталь 45, Ст. 6	170	141	113	98	71	_	_	_	_	

5.14. Уточнение значения КПД передачи

Значение КПД передачи:

$$\eta_3 = (0.95....0.96) \frac{tg\gamma}{tg(\gamma + \varphi')};$$
(5.7)

где ф' - приведенный угол трения, определяемый опытным путем табл. 38.

Таблица 38.

Значение угла φ' трения в червячных передачах при различных скоростях скольжения υ_{ск}

Uck, M/C	φ′	υ _{ск} , м/с	φ′	υ _{ск} , м/с	φ′
1,0	2°30′3°10′	2,5	1°40′2°20′	7	1°00′1°30′
1,5	2°20′2°50′	3,0	1°30′2°00′	10	0°55′1°20′
2,0	2°00′2°30′	4,0	1°20′1°40′	15	0°50′1°10′

 $^{*\}Pi$ р и м е ч а н и е . Меньшие значения ϕ' для передач с венцом колеса из оловянной бронзы, большие из безоловянной бронзы и чугуна

5.15. Уточненное значение момента на валу колеса

Момент на валу колеса T_2 :

$$T_2 = P_2 \eta_3 / \omega_3 \tag{5.8}$$

где P_2 – мощность на валу колеса; ω_3 – угловая скорость колеса; η_3 – КПД червячной передачи.

5.16. Расчетное контактное напряжение в зацеплении

Расчетное напряжение в зацеплении определяют по формуле:

$$\sigma_{H} = \frac{170}{z_{2}/q} \sqrt{\frac{(z_{2}/q+1)^{3}}{a_{\omega}^{3}} T_{2} K_{H\beta} K_{H\nu}} \leq [\sigma_{H}]$$
 (5.9)

Расхождение расчетного напряжения и допускаемого не должно превышать 15 %.

5.17. Силы действующие в зацеплении

Окружная сила на колесе и осевая на червяке:

$$F_{t2} = F_{a1} = \frac{2T_3}{d_2} \,.$$

Окружная сила на червяке и осевая на колесе:

$$F_{t1} = F_{a2} = F_{t2}tg(\gamma + \varphi'),$$

Радиальная сила:

$$F_{r1} = F_{r2} = F_{t2}tg\alpha ,$$

где α – угол зацепления, α = 20°.

5.18. Эквивалентное число зубьев колеса

Эквивалентное число зубьев колеса:

$$z_{v2} = z_2/\cos^3\gamma.$$

5.19. Расчетное напряжение изгиба червячного колеса

Напряжение изгиба зубьев червячного колеса σ_{F2} рассчитывают по формуле:

$$\sigma_{F2} = 1.5 Y_{F2} K_{F\beta} K_{F\nu} \frac{T_3 \cos \gamma}{d_1 d_2 m}; \tag{5.10}$$

где Y_{F2} — коэффициент учитывающие форму зуба колеса (табл. 39); $K_{F\beta}$; $K_{F\upsilon}$ — коэффициенты нагрузки (см. п. 5.4).

Таблица 39

Значение коэффициента формы зуба У г

z_{v2}	28	30	35	40	45	50	65	80	100	150
$Y_{\rm F}$	2,43	2,41	2,32	2,27	2,22	2,19	2,12	2,09	2,08	2,04

5.20. Сила изгибающая червяк

Силу, изгибающую червяк, определяют по формуле:

$$F = \sqrt{F_{t1}^2 + F_{r1}^2}; (5.11)$$

где F_{t1} – окружная сила на червяке, H; F_{t1} - радиальная сила, H.

6. РАСЧЕТ КОНИЧЕСКОЙ ЗУБЧАТОЙ ПЕРЕДАЧИ

Исходные данные (см. рис 1, схема III):

- мощность быстроходного вала передачи P_1 , кВт;
- момент быстроходного вала передачи T_1 H·м;
- угловая скорость шестерни ω_1 , c^{-1} ;
- передаточное отношение i_1 .

В расчете принимают коническую передачу с осями, пересекающимися под углом 90° (δ_1 + δ_2 =90°).

6.1. Выбор материала шестерни и колеса

Материал шестерни и колеса конической передачи выбирают так же, как и для цилиндрической передачи (см. п. 4.1.)

6.2. Расчет допускаемых напряжений

Расчет допускаемых напряжений $[\sigma_H]$, МПа рассмотрен в п. 4.2.

Внешний диаметр основания делительного конуса колеса (см. рис. 9), мм:

$$d_{e2} = 165 \sqrt{\frac{i_1 T_2 K_{H\beta}}{\theta_H [\sigma_H]^2}}$$

$$(6.1)$$

где T_2 — крутящий момент на валу колеса, Н·мм; $K_{H\beta}$ — коэффициент неравномерности нагрузки по ширине зуба (см. табл. 25), i_1 — передаточное отношение конической передачи; θ_H — коэффициент формы конических колес, θ_H = 1 — для прямозубых колес; θ_H = 1,85 — для колес с круговыми зубьями при твердости шестерни и колеса меньшей 350HB; θ_H = 1,5 — при твердости шестерни не более 350HB и твердости колеса более 45HRC.

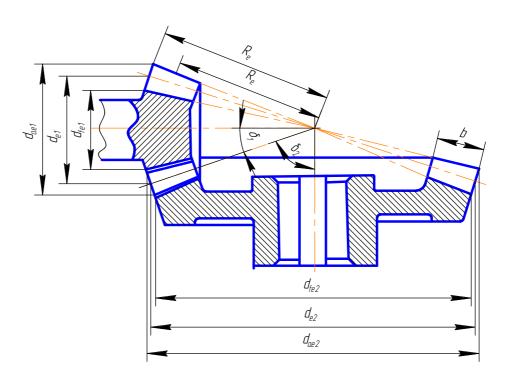


Рис. 9. Зацепление конической передачи

Расчетное значение $d_{\scriptscriptstyle e2}$ округляют по ГОСТ 12289-76 (мм): 50, (56), 63; (71); 80; (90); 100; 100; (112); 125; (140); 160; (180); 200; (225); 250; 280; 315; 355; 400; 450; 500; 560; 630; 710; 800; 900; 1000 до 1600.

6.3. Внешнее конусное расстояние

Внешнее конусное расстояние R_{α} (мм) определяют по формуле:

$$R_e = \frac{d_{e2}}{2} \sqrt{1 + (1/i_1^2)} \tag{6.2}$$

6.4. Ширина зубчатого венца шестерни и колеса

Ширина b зубчатого венца шестерни и колеса, мм:

$$b = \psi_{hRe} R_e, \tag{6.3}$$

где $\psi_{b\,\mathrm{Re}} = 0.285\,$ — коэффициент ширины венца.

Значение b округляют до ближайшего большего из ряда R_a 40 (ГОСТ 6636-69): 8,0; 8,5; 9,0; 9,5; 10; 10,5; 11; 11,5; 12; 13; 14; 15; 16; 17; 18; 19; 20; 21; 22; 24; 25; 26; 28; 30; 32; 34; 36; 38; 40; 42; 45; 48; 50; 53; 56; 60; 63; 67; 71; 75; 80; 85; 90; 95; 100; 105; 110; 120; 125; 130; 140; 150; 160; 170; 180; 190; 200 до 950.

6.5. Контактные напряжения

Контактные напряжения проверяются во избежание ошибок при определение основных параметров и в целях использования материалов зубчатой пары:

$$\sigma_{H} = \frac{335}{R} \sqrt{\frac{T_{2} K_{H} \sqrt{(i_{1}^{2} + 1)^{3}}}{b i^{2}}} \le [\sigma_{H}], \tag{6.4}$$

где R — среднее конусное расстояние $R = R_e - 0.5b$; $K_{\rm H}$ — коэффициент нагрузки:

$$K_{\rm H} = K_{H\beta} K_{H\alpha} K_{H\nu}, \tag{6.5}$$

 $K_{H\beta}$ — коэффициент неравномерности распределения нагрузки по длине контактной линии (см. табл. 26); $K_{H\alpha}$ — коэффициент динамической нагрузки (см. табл. 28), степень точности для конических колес на единицу выше, чем для цилиндрических; $K_{H\alpha}$ — коэффициент неравномерности распределения нагрузки между зубьями (см. табл. 29).

При проверочном расчете конических колес с круговыми зубьями на контактную прочность, с учетом коэффициентов Z_H = 1,59 , $Z_{_{\mathcal{E}}}$ = 0,8 :

$$\sigma_{H} = \frac{270}{R} \sqrt{\frac{T_{2} K_{H} \sqrt{(i^{2} + 1)^{3}}}{b i^{2}}} \le [\sigma_{H}]$$
(6.6)

6.6. Углы делительных конусов шестерни и колеса

Углы делительных конусов шестерни δ_1 и колеса δ_2 рассчитывают по формулам:

$$\delta_{s} = arctg(i) \ \delta_{s} = 90^{\circ} - \delta_{s} \tag{6.7}$$

Вычисления проводят с точностью до сто тысячных.

6.7. Средний окружной модуль

Средний окружной модуль m, мм определяется по формуле:

$$m = \frac{m_{e2}R}{R_o} \tag{6.8}$$

где m_{e2} — внешний окружной модуль (не округляется):

$$m_{e2} = \frac{d_{e2}}{z_2} \tag{6.9}$$

 z_2 — число зубьев колеса $z_2 = K \sqrt[5]{i^2} \sqrt[6]{d_{e2}}$; K = 18 (при улучшение шестерни и колеса); K = 14 (термообработка шестерни и колеса различные): K = 11,2 (термообработка шестерни и колеса однородные, помимо улучшения).

Расчетное число зубьев колеса округляется до целого числа. Число зубьев шестерни:

$$z_1 = \frac{z_2}{i_{\phi}} \tag{6.10}$$

(рекомендуется $z_1 \approx 18 \div 32$).

Фактическое передаточное число:

$$i_{\phi} = \frac{z_2}{z_1} \tag{6.11}$$

Вычисления проводятся до 5-го знака.

Отклонение передаточного числа должно удовлетворять условию:

$$\Delta u_{\phi} = \frac{\left| i_{\phi} - i_{1} \right|}{i_{1}} \cdot 100\% \le 5\%. \tag{6.12}$$

6.8 Эквивалентное число зубьев шестерни

Эквивалентное число зубьев шестерни рассчитывают по формуле:

$$z_{\nu} = \frac{z_1}{\cos^3 \beta \cos \delta} \tag{6.13}$$

где β – средний угол наклона $\beta = 35^{\circ}$ (рекомендуется).

6.9. Напряжения изгиба конического прямозубого колеса

Напряжения изгиба ножки зуба конического прямозубого колеса рассчитывают следующим образом:

$$\sigma_F = Y_F K_{F\beta} K_{F\nu} \frac{2 \cdot 10^3 T_1}{0.85 z \psi_m m^3} \le [\sigma_F]$$
 (6.11)

где $\psi_m = \psi_{bd} z_1$ — коэффициент ширины зубчатого венца по среднему модулю зубьев ($\psi_m = 6...12$), $K_{F\beta}$; $K_{F\nu}$ — коэффициенты нагрузки при расчете на изгиб, ψ_{bd} — коэффициент ширины зубьев по делительному диаметру, Y_F — коэффициент формы зубьев выбирается по эквивалентному числу зубьев (табл. 30 — число зубьев z соответствует эквивалентному числу зубьев z_{ν}), $[\sigma_F]$ — допускаемое напряжение изгиба, МПа, коэффициенты $K_{F\beta}$, $K_{F\nu}$, Y_F , $[\sigma_F]$ — выбираются так же как и для цилиндрических колес.

6.10. Проектировочный модуль

Проектировочный модуль m (мм), определяют по выражению:

$$m = \sqrt[3]{Y_F K_{F\beta} K_{F\nu} \frac{2 \cdot 10^3 T_1}{0.85 z \psi_m [\sigma_F]}}$$
 (6.12)

Значение проектировочного модуля не должно превышать значения среднего окружного модуля, в противном случае необходимо пересчитать передачу.

6.11. Основные параметры зубчатых колес конической передачи

Формулы для расчета основных геометрических параметров конических зубчатых колес приведены в табл. 40.

Таблица 40 Основные параметры зубчатых колес (конических)

Параметр	Шестерня	Колесо
Средний делительный диаметр,	$d_1 = mz_1$	$d_2 = mz_2$
MM	1 1	2 2
Внешняя высота зуба h_e , мм	$h_e = 2.2m_e$	$h_e = 2,2m_e$
Внешняя высота головки зуба	$h_e = m_e$	$h_e = m_e$
h_{ae} , MM		
Внешняя высота ножки зуба h_{fe} ,	$h_{fe} = 1,2m_e$	$h_{fe} = 1.2 m_e$
MM		
Угол головки зуба δ_a , град	$\delta_{a1} = \delta_{f1}$	$\delta_a = \delta_f$
Угол ножки зуба δ_f , град	$\delta_f = arctg(h_{fe}/R_e)$	$\delta_f = arctg(h_{fe}/R_e)$
Внешний диаметр вершин	$d_{ae1} = d_{e1} + 2h_{ae}\cos\delta_1$	$d_{ae2} = d_{e2} + 2h_{ae}\cos\delta_2$
зубьев, d_{ae} , мм		

6.11. Силы, действующие в зацеплении

Окружные силы F_t , H:

$$F_{t1} = F_{t2} = \frac{2T_2}{d_2}$$

Окружная сила, приложена по касательной к средней делительной окружности, для шестерни имеет индекс «1», для колеса – «2».

Радиальные силы F_r , H:

$$F_{r1} = F_{t}tg\alpha \cdot \sin \delta_{2}$$
$$F_{r2} = F_{t} \cdot tg\alpha \cdot \sin \delta_{1}$$

Осевые силы F_a , H:

$$F_{a1} = F_{r2}$$
; $F_{a2} = F_{r1}$

7. ПРЕДВАРИТЕЛЬНЫЙ РАСЧЕТ ВАЛОВ И ОПРЕДЕЛЕНИЕ КОНСТРУКТИВНЫХ РАЗМЕРОВ КОРПУСА РЕДУКТОРА.

Предварительный расчет и определение конструктивных размеров валов редуктора проводится на кручение по пониженным допускаемым напряжениям $[\tau_{\kappa}] = 15...20$ МПа. Он необходим для первого этапа компоновки. Расчетный диаметр ведущего вала, если между редуктором и электродвигателем нет цепной или ременной передачи, необходимо выбирать по валу электродвигателя (ротора), чтобы соединить их стандартной муфтой.

Часто выходной диаметр ведущего вала редуктора, соединенного через муфту с валом электродвигателя принимают равным диаметру вала электродвигателя (прил. 1).

Диаметр выходного конца (рис. 1 схема I):

$$d_2 \ge \sqrt{\frac{16T_2}{\pi[\tau_k]}};\tag{7.1}$$

где T_2 – крутящий момент быстроходного вала, Н·м.

Полученный результат округляют до ближайшего большего значения из стандартного ряда: 10; 10,5; 11; 11,5; 12; 13; 14; 15; 16; 17; 18; 19; 20; 21; 22; 24; 25; 26; 28; 30; 32; 33; 34; 36; 38; 40; 42; 45; 48; 50; 52; 55; 60; 63; 65; 70; 75; 80; 85; 90; 95; 100; 105; 110; 120; 125; 130 и далее через 10 мм.

Для удобства сборки и разборки узла вала, замены подшипников и других насаживаемых деталей валы выполняют ступенчатыми. Диаметр вала под подшипник должен быть $d_1 < d_{\pi} < d_{\pi}$ и кратным 5.

Посадочный диаметр вала под зубчатое колесо $d_{3\pi} = d_{\pi} + (2...10)$ мм и округляется до стандартного ряда.

На участках вала с неподвижными посадками деталей задают отклонения размеров вала s6, u7, r6, n6, со скосами с целью упростить демонтаж. Размеры скосов и фасок c, мм (места 1 и 2) по табл. 41. Пример вала на рис. 10.

Таблица 41

Технологические размеры вала, мм

Диаметр вала <i>d</i>	1530	3045	4570	70100	100150
С	1,5	2,5	2,5	3	4
r	1,0	1,0	1,5	2,0	2,5

В месте 3 (см. рис. 10) перехода предусматривают галтели радиусом r в зависимости от d_1 .

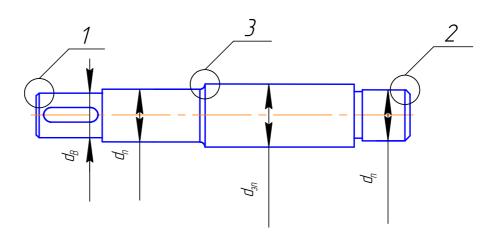


Рис. 10. Вал

В случае если в местах перехода от d к D детали не устанавливаются, предусматривают галтели с радиусом закругления $R \approx 0.4(D-d)$.

Быстроходный вал редуктора целесообразно выполнять за одно с шестерней, так диаметр впадин шестерни d_{fl} обычно незначительно превышает диаметр вала.

Тихоходный вал редуктора рассчитывается и проектируется по аналогии с быстроходным валом. Различие в том, что зубчатое колесо сажают на вал при помощи шпоночного соединения, следовательно, необходимо предусмотреть паз под шпонку в месте просадки зубчатого колеса.

Определение параметров корпуса и крышки редуктора.

Расчетное значение толщины стенок корпуса и крышки одноступенчатого редуктора определяют по формулам, представленным в табл. 42 и округляют до нормального ряда чисел (не менее 8).

Диаметр болтов:

• фундаментных:

$$d_1 = 1,25\sqrt[3]{2 \cdot T_2}$$
;

• крепящих крышку к корпусу у подшипников:

$$d_2 = (0,7...0,756)d_1;$$

• соединяющих крышку с корпусом $d_3 = (0,5...0,6)d_1$.

Диаметры болтов округляют согласно нормальному ряду диаметров резьбы.

Таблица 42 Расчет значений элементов корпуса редуктора

	Редуктор					
Параметр	0	двух-				
	цилиндрический	червячный	конический	ступенчатый		
Толщина стенок	$\delta = 0.025a_{\omega} + 1$	$\delta = 0.04 a_{\omega} + 2$	$\delta = 0.05R_e + 1$	δ =0,025 a _Σ +3		
корпуса				$a_{\Sigma} = a_{\omega 1} + a_{\omega 2}$		
Толщина стенок	$\delta_1 = 0.032a_{\omega} + 1$	$\delta_1 = 0.02a_\omega + 2$	$\delta_1 = (0,80,9)\delta$	$\delta_1 = 0.02 a_{\Sigma} + 3$		
крышки редуктора				·		
Толщина фланцев:						
верхнего	$b = 1.5\delta$	$b = 1.5\delta$	$b = 1.5\delta$	b=1,5δ		
нижнего	$b = 1.5\delta$ $p = 2.35\delta.$	$p = 2,35\delta$.	$p = 2,35\delta$.	p=2,35δ.		

8. ПЕРВЫЙ ЭТАП КОМПОНОВКИ

8.1. Компоновка зубчатого цилиндрического редуктора

8.1.1. Компоновка зубчатого цилиндрического одноступенчатого редуктора

Компоновка включает в себя два этапа. На первом этапе ориентировочно намечают расположение зубчатых колес и шестерен относительно опор с последующим определением опорных реакций и опор подшипников. Рассчитывают габаритные размеры передачи, необходимые для выбора смазки редуктора.

Компоновочный чертеж представляет собой проекцию — разрез по осям валов редуктора при виде сверху и выполняется на миллиметровой бумаге в масштабе 1:1.

В центре листа проводим горизонтальную осевую линию 1 (рис. 11) и пересекающие ее две вертикальных осевых линии 2 и 3, оси валов на расстоянии a_0 (межосевое расстояние).

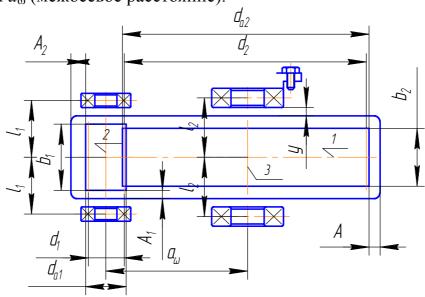
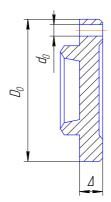


Рис. 11 Первый этап компоновки зубчатого цилиндрического одноступенчатого редуктора.

В виде прямоугольников с использованием размеров d_1 , d_{a1} , d_{f1} , b_1 и d_2 , d_{a2} , d_{f2} , b_2 вычерчивают шестерню и колесо. Шестерню изготавливают за одно с валом, длина ступицы колеса равна ширине венца колеса и на компоновочном чертеже дополнительно не вырисовывается.


Далее вычерчиваем внутреннюю стенку корпуса редуктора: расстояние от окружности вершин зубьев колеса и шестерни $A=\delta$; расстояние между торцом шестерни и внутренней стенкой редуктора A=

 $1,2\delta$; расстояние между наружным кольцом подшипника ведущего вала и внутренней стенкой корпуса $A=\delta$; в случае, когда диметр окружности вершин зубьев больше наружного диаметра подшипника, данное расстояние откладывается от шестерни.

Предварительно по диаметру вала в месте посадки выбираются подшипники из прил. 2. По табличным значениям определяют их габаритные размеры и назначают смазку, в зону зацепления устанавливают мазеудерживающие кольца. Размер последних y = 8...12 мм.

При помощи измерений находятся расстояния на ведущем валу между осями шестерни и подшипника l_1 и между осью колеса и осью подшипника на ведомом валу l_2 (мм) и уравниваются по большему расстоянию $l_1 = l_2$.

Выбираем под подшипник глубину гнезда $l_{\rm r}=1.5B~(B-{\rm ширина}$ подшипника) и округляют данное значение до нормального ряда. По диаметру d_0 отверстия принимаем толщину фланца крышки Δ (рис. 12). Высоту головки болта принимают равной $h=0.7d_6$.

Размеры крышки подшипника, мм

D	d_0	Δ
20-50 50-65 65-90 90-120	7 9 12	8 10 12
90-120	/4	/4

Рис. 12. Параметры крышки подшипника.

8.1.2. Компоновка зубчатого цилиндрического двухступенчатого редуктора

Компоновка двухступенчатого редуктора производится по правилам и в последовательности аналогичным компоновке одноступенчатого редуктора. Особенностью компоновки двухступенчатого редуктора является наличие промежуточного вала.

Промежуточный вал, как правило, выполняется заодно с шестерней. Между зубчатыми колесами и подшипниками могут быть предусмотрены распорные втулки. Расстояние c_3 между шестерней и колесом промежуточного вала задается в пределах от 0 до 5 мм (рис. 13).

При помощи измерений находятся расстояния на ведущем валу между осью шестерни и осями подшипников l_1' , l_2' расстояния l_1'' , l_2'' и l_3'' на промежуточном валу и расстояния l_1''' , l_2'''' на ведомом валу (рис.13).

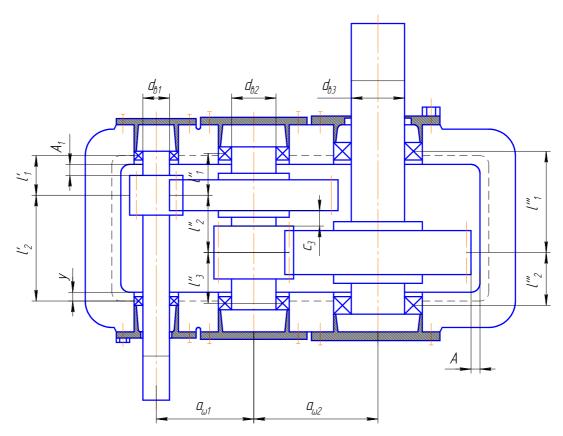


Рис. 13. Первый этап компоновки зубчатого двухступенчатого редуктора

8.2. Компоновка червячного редуктора.

Так же, как и для цилиндрического редуктора целью компоновочного чертежа является на первом этапе определение ориентировочного расположения зубчатого колеса и червяка относительно опор с последующим определением опорных реакций и опор подшипников. Рассчитывают габаритные размеры передачи, необходимые для выбора смазки редуктора.

Чертеж выполняют в двух проекциях тонкими линиями в масштабе 1 : 1 — разрез по оси колеса и разрез по оси и разрез по оси чертежа (рис. 14).

Посередине листа проводим горизонтальную осевую линию, параллельно ей ниже на расстоянии a_{ω} — вторую осевую. Далее вычерчивают вертикальные линии обоих разрезов (видов, проекций), получаем центры червяка О и О' и червячного колеса O_1 и O'_1 .

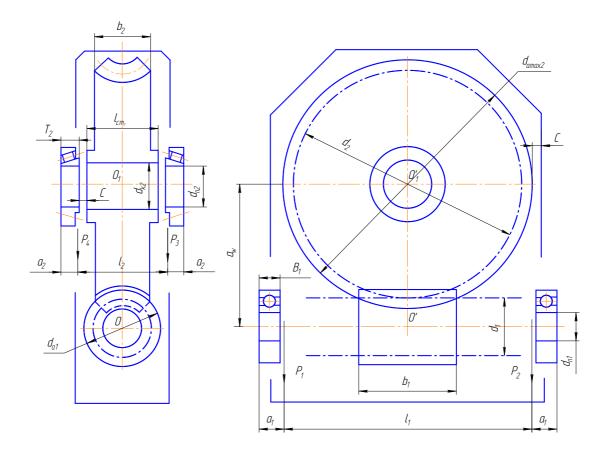


Рис. 14. Первый этап компоновки червячного редуктора.

В обоих проекциях вычерчиваем червяк и червячное колесо по размерам d_1 , d_{a1} , b_1 и d_2 , d_{a2} , b_2 .

Принимая зазор между стенкой и ступицей червячного колеса и между стенкой и червячным колесом, вычерчивают внутреннюю стенку редуктора c=10...15мм.

Симметрично среднему сечению червяка на расстоянии $l_1 = d_{\rm aM2}$ вычерчивают подшипники колеса. Так же симметрично вычерчивают подшипники червячного колеса, отступив от ступицы колеса 15мм, замеряют расстояние l_2 .

Так как в зацеплении червячного колеса и червяка имеют место значительные осевые усилия, принимаем шариковые радиально-упорные однорядные подшипники для червяка и роликовые конические для вала червячного колеса (см. прил. 2).

Радиально-упорные подшипники дают смещение точки приложения реакции, поэтому для определения наружных точек необходимо определить размер a_1 , мм:

• для однорядных радиально-упорных подшипников:

$$a_1 = 0.5 \left[B + \frac{(d+B)}{2} tg\alpha \right];$$

• для однорядных роликовых конических подшипников:

$$a_1 = \frac{T}{2} + \frac{(d+D) \cdot e}{6}$$

Величины T, B, d, D, $tg\alpha$ приведены в прил. 2.

8.3. Компоновка конического редуктора

Первый этап компоновки конического зубчатого редуктора выполняют, как и для цилиндрического редуктора, в тонких линиях на миллиметровой бумаге в масштабе 1:1.

Компоновку редуктора начинают с вычерчивания осевых линий валов (оси валов должны пересекаться под углом 90°). Вычерчивают шестерню и колесо, в соответствии с геометрическими параметрами, полученными в п.п. 6.1.-6.10.

Далее вычерчивают прямоугольный треугольник, катеты которого равны внешним делительным диаметрам шестерни d_{e1} и d_{e2} для колеса (рис.15). Конусное расстояние R_e находят построением, соединив точку пересечения осей валов конического зацепления с вершиной прямоугольного треугольника на катете равном d_{e1} . Отложив высоту головки h_e и ножки h_f зуба, на отрезке перпендикулярном R_e , вычерчивают зацепление.

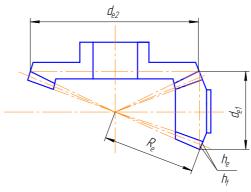


Рис. 15. Компоновка конического зацепления.

На валах намечаем радиально-упорные подшипники, в соответствии с предварительным расчетом валов. Вал-шестерню конического зацепления в редукторах малых размеров устанавливают консольно на двух конических роликоподшипниках по жесткой схеме (рис. 15а). При больших нагрузках применяют схему с радиальным подшипником около шестерни и двумя коническими подшипниками на противоположной опоре (рис. 15б).

Назначают смазку подшипников: при применении пластичной смазки в зону зацепления устанавливают мазеудерживающие кольца. Размер последних y = 8...12 мм; при применении смазки при помощи масляного тумана для смазывания подшипника на валу-шестерни удаленного от масляной ванны на фланце корпуса в плоскости разъема лелают канавки, а на крышке корпуса скосы [10].

Радиально-упорные подшипники дают смещение точки приложения реакции, поэтому для определения наружных точек необходимо определить размер a_1 , мм:

• для однорядных шариковых радиально-упорных подшипников:

$$a_1 = 0.5 \left[B + \frac{(d+B)}{2} tg\alpha \right];$$

• для однорядных роликовых конических подшипников:

$$a_1 = \frac{T}{2} + \frac{(d+D) \cdot e}{6}$$

Величины T, B, d, D, $tg\alpha$ приведены в прил. 2.

Для уменьшения неравномерности распределения удельных нагрузок по ширине зубчатого венца при консольном закреплении шестерни ближний подшипник располагают на расстоянии $c = (1,0...1,2)\delta + (3...5)$ мм. Дальний подшипник от шестерни расположен на расстоянии $L = (2,5....3,5)d_{\rm B1}$, где $d_{\rm B1}$ – диаметр быстроходного вала.

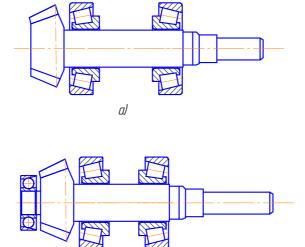


Рис. 16. Схемы компоновки подшипников на ведущем валу конического редуктора.

Намечаем внутреннюю стенку корпуса с зазором $c_1 = (1...1,2)\delta$ от торца ступицы конического колеса, где δ – толщина стенки редуктора, мм. Длина ступицы конического колеса $L_{\rm cr} = (1,6....1,8)d_{\rm B2}$, где $d_{\rm B2}$ – диаметр тихоходного вала, мм.

Размер прилива k, в котором размещен комплект вала конической шестерни с подшипниками определяется из следующего выражения:

$$k = (3...2,3)d_{\text{болт}}$$

где $d_{\text{бол}}$ – диаметр болта крышки подшипника, мм.

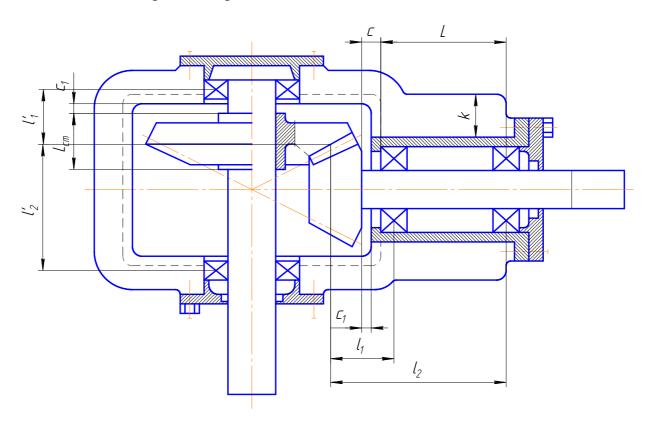


Рис. 17. Компоновка конического редуктора

После всех построений путем измерения находим (мм): на ведущем валу размеры l_1, l_2 ; на ведомом валу – l'_1, l'_2 .

Назначаем смазку подшипников, выбираем под подшипник глубину гнезда $l_{\rm r1}$ = 1,5B мм; $l_{\rm r2}$ = 1,5*B* мм, толщину фланца крышки Δ мм (см. рис. 12).

Окончательно уточняем с учетом смещения приложения реакций для радиально-упорных шариковых подшипников расстояния l_1 , l_2 , l'_1 , l'_2 .

9. ПРОВЕРКА ДОЛГОВЕЧНОСТИ ПОДШИПНИКОВ

Исходные данные:

- момент и угловая скорость быстроходного вала соответственно T_2 (H·мм) и ω_2 (c⁻¹);
 - нагрузка от клиноременной передачи Q_{max} , H;
 - делительный диаметр шестерни d_1 , мм;
 - силы в зацеплении: окружная F_t , осевая F_a , радиальная F_r , H;
 - диаметр вала под подшипник шестерни d_3 , мм;
 - расчетная долговечность подшипника L_h , ч.

Нагрузки валов зубчатых и червячных передач определяются усилиями, возникающими в зацеплении. При наличии ременной (рис. 18) или цепной передачи валы испытывают нагрузки от натяжения ветвей. На рис. 19 представлены схемы сил зацепления на валах.

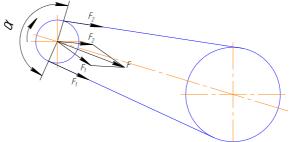


Рис. 18. Силы, возникающие в ременной передачи

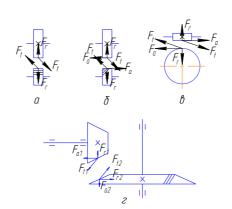


Рис 19. Силы в зацеплении зубчатых цилиндрических (схемы а, б), червячных (схема в) и конических колес (схема г).

9.1. Определение реакций на валах зубчатого цилиндрического редуктора

9.1.1. Быстроходный вал зубчатого цилиндрического редуктора

Радиальные реакции в опорах изображены на рис. 20. Левую опору, воспринимающую внешнюю осевую силу F_a , обозначим с индексом 2.

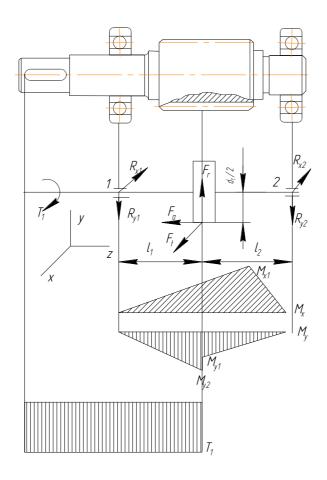


Рис. 20. Силы и моменты на ведущем валу редуктора (к схеме 1).

В плоскости ХХ:

$$\sum M_1 = 0 \qquad R_{x2}(l_1 + l_2) - F_t l_2 = 0;$$

$$\sum M_2 = 0 \qquad -R_{x1}(l_1 + l_2) + F_t l_2 = 0;$$

$$R_{x1} = R_{x2} = \frac{F_t}{2} \qquad \text{(T.K. } l_1 = l_2),$$

где l_1 , l_2 — расстояния от точки приложения силы до рассматриваемой точки (относительно которой решается система уравнений).

Решая систему уравнений находим: R_{x2} , R_{x1} . Должно выполняться условие: $R_{x2} + R_{x1} - F_t = 0$ (сумма проекций на ось X должна быть равна «0»).

В плоскости ҮХ:

$$\sum M_1 = 0 - R_{y2}(l_1 + l_2) + F_r l_1 - F_a d_1/2 = 0;$$

$$\sum M_2 = 0$$
 $R_{y1}(l_1 + l_2) - F_r l_1 - F_a d_1/2 = 0.$

Из системы уравнений моментов:

$$R_{y2} = \frac{F_r l_2 - F_a \frac{d_1}{2}}{l_1 + l_2}; \qquad R_{y1} = \frac{F_r l_2 + F_a \frac{d_1}{2}}{l_1 + l_2},$$

где d_1 – делительный диаметр шестерни (колеса).

Решая систему уравнений, находим: R_{y2} , R_{y1} . Проверка нахождения реакций: $R_{y2} + R_{y1} - F_{r} = 0$ (сумма проекций на ось Y должна быть равна «0»).

9.1.2. Промежуточный вал зубчатого цилиндрического редуктора

Радиальные реакции в опорах промежуточного вала изображены на рис. 21.

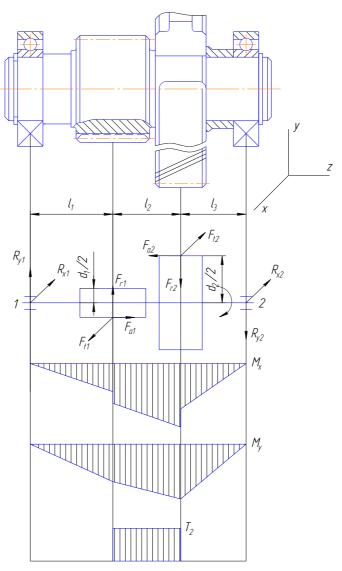


Рис. 21. Силы и моменты на промежуточном валу редуктора

Плоскость ҮΖ:

$$\begin{split} \Sigma M_1 &= 0 \; ; \; F_{a1} \cdot \frac{d_1}{2} + F_{r1} \cdot l_1 + F_{a2} \cdot \frac{d_2}{2} - F_{r2}(l_1 + l_2) - R_{y2}(l_1 + l_2 + l_3) = 0 \; ; \\ R_{y2} &= \frac{F_{a1} \cdot \frac{d_1}{2} + F_r \cdot l_1 + F_a \frac{d_2}{2} - F_{r2}(l_1 + l_2)}{l_1 + l_2 + l_3} \; . \\ \Sigma M_2 &= 0 \; ; \; - R_{y1}(l_1 + l_2 + l_3) + F_{a1} \cdot \frac{d_1}{2} - F_{r1}(l_2 + l_3) + F_{a2} \frac{d_2}{2} + F_{r2} \cdot l_3 = 0 \; ; \\ R_{y1} &= \frac{F_{a1} \cdot \frac{d_1}{2} - F_{r1}(l_2 + l_3) + F_{a2} \frac{d_2}{2} + F_{r2} \cdot l_3}{l_1 + l_2 + l_3} \; . \end{split}$$

Сумма проекций на ось Y должна быть равна «0».

Плоскость XZ:

$$\begin{split} \Sigma M_1 &= 0 \; ; \; -F_{t1} \cdot l_1 + F_{t2}(l_1 + l_2) + R_{x2}(l_1 + l_2 + l_3) = 0 \; ; \\ R_{x2} &= \frac{F_{t1} \cdot l_1 - F_{t2}(l_1 + l_2)}{l_1 + l_2 + l_3} \; . \\ \Sigma M_2 &= 0 \; ; \; -R_{x1}(l_1 + l_2 + l_3) + F_{t1}(l_2 + l_3) - F_{t2} \cdot l_3 = 0 \; ; \\ R_{x1} &= \frac{F_1(l_2 + l_3) - F_{t2} \cdot l_3}{l_1 + l_2 + l_3} \; . \end{split}$$

Сумма проекций на ось X должна быть равна «0».

9.1.3. Тихоходный вал зубчатого редуктора

Радиальные реакции в опорах вала изображены на рис. 22. Плоскость YZ:

$$\Sigma M_1 = 0 \qquad -F_r l_1 - R_{y4} \cdot (l_1 + l_2) + F_{3y} (l_1 + l_2 + l_3) - F_{a2} \frac{d_2}{2} = 0;$$

$$R_{y4} = \frac{F_{3y} (l_1 + l_2 + l_3) - F_{a2} \frac{d_2}{2} - F_r l_1}{l_1 + l_2}.$$

$$\begin{split} \Sigma M_2 &= 0 & -R_{y3} \cdot (l_1 + l_2) + F_{r2} l_2 - F_{a2} \frac{d_2}{2} + F_{3y} l_3 = 0 \,; \\ R_{y3} &= \frac{F_{r2} l_2 - F_{a2} \frac{d_2}{2} + F_{3y} l_3}{l_1 + l_2} \,. \end{split}$$

Сумма проекций на ось У должна быть равна «0».

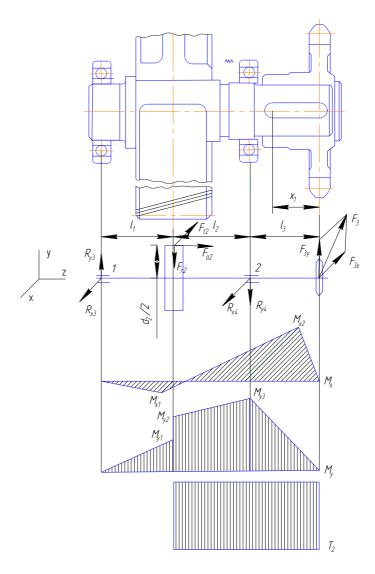


Рис. 22. Силы и моменты на ведомом валу редуктора (см. рис. 1 схема I)

Плоскость *XZ*:

$$\begin{split} \Sigma M_1 &= 0 & F_{t2}l_1 - R_{x4} \cdot (l_1 + l_2) + F_{3x}(l_1 + l_2 + l_3) = 0 \; ; \\ R_{x4} &= \frac{F_{3x}(l_1 + l_2 + l_3) + F_{t2}l_1}{l_1 + l_2} ; \end{split}$$

$$\Sigma M_2 = 0 R_{x3} \cdot (l_1 + l_2) - F_t l_2 + F_{3x} l_3 = 0;$$

$$R_{x3} = \frac{-F_{3x} l_3 + F_t l_2}{l_t + l_2}.$$

Сумма проекций на ось X должна быть равна «0».

9.2. Определение реакций на валах червячного редуктора

Плоскость УZ (вал червяка – рис.23а):

$$\begin{split} \Sigma M_1 &= -F_{r1}l_1 - F_{a1}\frac{d_1}{2} + R_{y2}(l_1 + l_2) - F_{py}(l_1 + l_2 + l_3) = 0\,;\\ R_{y2} &= \frac{F_{r1}l_1 + F_{a1}\frac{d_1}{2} + F_{py}(l_1 + l_2 + l_3)}{l_1 + l_2}\,;\\ \Sigma M_2 &= -R'_{y1}(l_1 + l_2) + F_{r1}l_2 - F_{a1}\frac{d_1}{2} - F_{py}l_3 = 0\,;\\ R_{y1} &= \frac{F_{a1}\frac{d_1}{2} + F_{py}l_3 - F_{r1}l_2}{l_1 + l_2}\,. \end{split}$$

В плоскости ХХ:

$$\begin{split} \Sigma M_1 &= F_{t2} l_1 - R_{z2} (l_1 + l_2) - F_{py} (l_1 + l_2 + l_3) = 0 \; ; \\ R_{x2} &= \frac{F_{t1} l_1 - F_{py} (l_1 + l_2 + l_3)}{l_1 + l_2} \; . \\ \\ \Sigma M_2 &= R_{x1} (l_1 + l_2) - F_{t1} l_2 - F_{px} l_3 = 0 \; ; \\ \\ R_{x1} &= \frac{F_{py} l_3 + F_{t1} l_2}{l_1 + l_2} \; . \end{split}$$

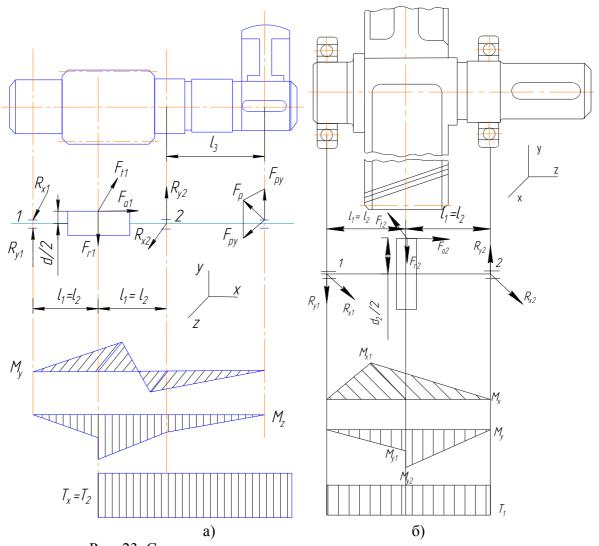


Рис. 23. Силы и моменты в зацеплении червячного редуктора (а – ведущий вал, б – ведомый вал)

Вал червячного колеса (рис. 23б):

• в плоскости *XZ*:

$$R\mathbf{x}_1 = R\mathbf{x}_2 = \frac{F_{t2}}{2} \,.$$

• в плоскости *YZ*:

$$R_{y1} = \frac{1}{2l_2} \left(F_{r2} l_2 + F_{a2} \frac{d_2}{2} \right);$$

$$R_{y2} = \frac{1}{2l_2} \left(F_{r2} l_2 - F_{a2} \frac{d_2}{2} \right).$$

9.3. Определение реакций на валах конического редуктора

9.3.1. Быстроходный вал конического редуктора

Расчетная схема быстроходного вала конического редуктора изображена на рис. 24.

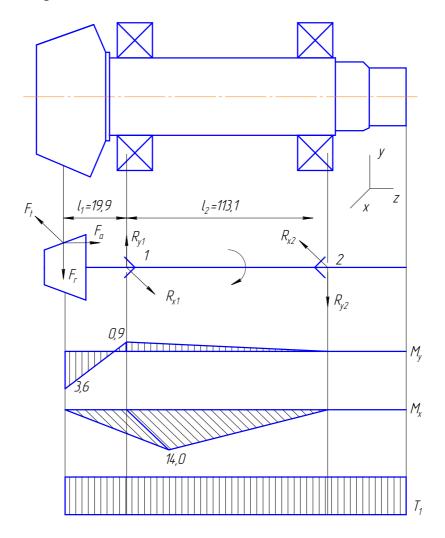


Рис. 24. Силы и моменты на ведущем валу конического редуктора

Плоскость ҮΖ:

$$\begin{split} \Sigma M_2 &= 0 \; ; \; -F_{a1} \cdot \frac{d_{e1}}{2} + F_{r1} \cdot (l_1 + l_2) - R_{y1} \cdot l_2 = 0; \\ R_{y1} &= \frac{-F_{a1} \frac{d_{e1}}{2} + F_{r1} (l_1 + l_2)}{l_2}. \\ \Sigma M_1 &= 0 \; ; \; -F_{a1} \cdot \frac{d_{e1}}{2} + F_r \cdot l_1 - R_{y2} \cdot l_2 = 0; \end{split}$$

$$R_{y2} = \frac{-F_a \cdot \frac{d_1}{2} + F_r \cdot l_1}{l_2}.$$

Сумма проекций на ось *Y* должна быть равна «0».

Плоскость XZ:

$$\begin{split} \Sigma M_2 &= 0 \; ; \; -F_t(l_1+l_2) + R_{x1} \cdot l_2 = 0; \\ R_{x1} &= \frac{F_t(l_1+l_2)}{l_2}. \\ \Sigma M_1 &= 0 \; ; \; -F_t \cdot l_1 + R_{x2} \cdot l_2 = 0; \\ R_{x2} &= \frac{F_{t1} \cdot l_1}{l_2}; \end{split}$$

Сумма проекций на ось X должна быть равна «0»

9.3.2. Тихоходный вал конического редуктора

Расчетная схема быстроходного вала конического редуктора изображены на рис. 25.

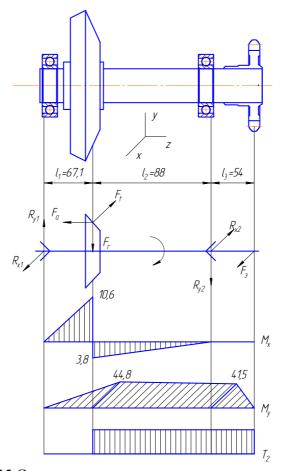


Рис. 25 Силы и моменты на валу конического колеса

Плоскость ҮΖ:

$$\begin{split} \Sigma M_1 &= 0 \; ; \; F_a \cdot \frac{d_{e2}}{2} - F_r \cdot l_1 - R_{y2}(l_1 + l_2) = 0. \\ R_{y2} &= \frac{F_a \cdot \frac{d_2}{2} - F_r \cdot l_1}{l_1 + l_2} \\ \Sigma M_2 &= 0 \; ; \; F_a \cdot \frac{d_{e2}}{2} + F_r \cdot l_2 - R_{y1}(l_1 + l_2) = 0. \\ R_{y1} &= \frac{F_a \cdot \frac{d_2}{2} + F_r \cdot l_2}{l_1 + l_2} \end{split}$$

Сумма проекций на ось Y должна быть равна «0».

Плоскость XZ:

$$\begin{split} \Sigma M_1 &= 0 \; ; \; F_t \cdot l_1 + R_{x2}(l_1 + l_2) - F_3(l_1 + l_2 + l_3) = 0 \; ; \\ R_{x2} &= \frac{F_3(l_1 + l_2 + l_3) - F_t \cdot l_1}{l_1 + l_2} \; . \\ \Sigma M_2 &= 0 \; ; \; R_{x1} \cdot (l_1 + l_2) - F_t \cdot l_2 - F_3 \cdot l_3 = 0 \; ; \\ R_{x1} &= \frac{F_t \cdot l_2 + F_3 \cdot l_3}{l_1 + l_2} \; . \end{split}$$

Сумма проекций на ось X должна быть равна «0». Суммарные реакции, H:

$$P_{r2} = \sqrt{R_{x2}^2 + R_{y2}^2} \tag{9.1}$$

$$P_{r1} = \sqrt{R_{x1}^2 + R_{y1}^2} \tag{9.2}$$

Далее строятся эпюры моментов вала. Эпюры, построенные от осевых моментов с разных сторон вала, должны сойтись в одной точке.

Уравнения для определения моментов в характерных точках эпюры ведомого вала зубчатого редуктора (рис. 22) имеют вид:

$$\begin{split} M_{x1} &= R_{x1} l_1 \; ; \; M_{x2} = F_{3x} l_3 \; ; \\ \\ M_{y1} &= R_{y1} l_1 \; ; \; M_{y2} = R_{y1} l_1 + F_{a2} \frac{d_2}{2} \; ; \; M_{y3} = F_{3y} l_3 \; . \end{split}$$

Аналогично определяются моменты на валах цилиндрического редуктора и червячного редуктора.

9.4. Эквивалентная нагрузка подшипников

Осевые составляющие радиальных реакций:

• конических роликоподшипников:

$$S = 0.83eF_r$$
;

радиально-упорных шарикоподшипников:

$$S = eF_r$$
,

где e — параметр осевого нагружения, зависит от выбора подшипника (табл. 43 - 46)

Таблица 43

Осевые нагрузки подшипников

Условия нагружения	Осевые нагрузки
$S_1 > S_2 ; P_a > 0$	$P_{a1} = S_1$
$S_1 < S_2 ; P_a \ge S_2 - S_1$	$P_{a2} = S_1 + F_a$
$S_1 < S_2$; $P_a \ge S_2 - S_1$	$P_{a1} = S_2 - F_a; P_{a2} = S_2$

Эквивалентная нагрузка для подшипников:

при
$$\frac{F_a}{VF_r} > e$$
 $P_{_{\mathfrak{I}}} = (XVP_{rx} + YF_a)K_{_{\mathfrak{I}}}K_{_{\mathfrak{I}}}$ (9.3)
при $\frac{F_a}{VF_r} < e$ $P_{_{\mathfrak{I}}} = VP_{rx}K_{_{\mathfrak{I}}}K_{_{\mathfrak{I}}}$ (9.4)

при
$$\frac{F_a}{VF_r} < e$$
 $P_{\circ} = VP_{rx}K_{\delta}K_T$ (9.4)

где: P_{rx} – суммарная радиальная реакция наиболее нагруженного подшипника; V = 1 – при вращении внутреннего кольца; V = 1,2 – при вращении наружного кольца. Значения X и Y приведены в табл. 44 – 46; K_6 – коэффициент учитывающий характер нагрузки ($K_6 = 1,3...1,5$ для зубчатых передач 7-й и 8-й степени точности и редукторов всех конструкций); $K_{\scriptscriptstyle T}$ – температурный коэффициент, находится по следующей зависимости:

Рабочая температура	до							
подшипника °C	100	125	150	175	200	225	250	350
$K_{\scriptscriptstyle m T}$	1,0	1,05	1,10	1,15	1,25	1,35	1,40	1,45

Таблица 44 Значения X и Y для радиальных однорядных и двухрядных подшипников

$\frac{P_a}{C_0}$	$\frac{F_a}{VF_a}$	$-\leq e$	$\frac{F_{i}}{VF}$	$\frac{a}{r} \geq e$	e
	X	Y	X	Y	
0,014	1	0	0,56	2,30	0,19
0,028	1	0	0,56	1,99	0,22
0,056	1	0	0,56	1,71	0,26
0,084	1	0	0,56	1,55	0,28
0,11	1	0	0,56	1,45	0,30
0,17	1	0	0,56	1,31	0,34
0,28	1	0	0,56	1,15	0,38
0,42	1	0	0,56	1,04	0,42
0,56	1	0	0,56	1,00	0,44

Таблица 45

Значения Х и У для радиально-упорных конических и радиальных самоустанавливающих роликоподшипников

	Однорядные Двухрядные					Двухрядные			
$\frac{F_a}{VF_r}$	- ≤ <i>e</i>	$\frac{F_a}{VF_a}$	$-\geq e$	$\frac{F_a}{VF_r} \le e \qquad \frac{F_a}{VF_r} \ge e$		e			
X	Y	X	Y	X Y		X	Y		
1	0	0,4	0,4ctga	1	0,45ctga	0,67	0,67ctga	1,5tga	

Таблица 46

Значения Х и У для радиально-упорных шарикоподшипников

			Одноря				Двухр	ядные		
α°	$\frac{F_a}{C_0}$	$\frac{F_a}{VF_r}$	$\cdot \leq e$	$\frac{F_a}{VF_r}$	$-\geq e$	$\frac{F_a}{VF_r}$		F	$-\geq e$	e
		X	Y	X	Y	X	Y	X	Y	
12	0,014	0,014	0	0,45	1,81	1	2,08	0,76	2,94	0,30
	0,029	0,025	0	0,45	1,62	1	1,84	0,76	2,63	0,34
	0,057	0,057	0	0,45	1,46	1	1,60	0,76	2,37	0,37
	0,086	1	0	0,45	1,34	1	1,52	0,76	2,18	0,41
	0,11	1	0	0,45	1,22	1	1,39	0,76	1,98	0,45
	0,17	1	0	0,45	1,13	1	1,30	0,76	1,84	0,48
	0,29	1	0	0,45	1,04	1	1,20	0,76	1,69	0,52
	0,43	1	0	0,45	1,01	1	1,16	0,76	1,64	0,54
	0,57	1	0	0,45	1,00	1	1,16	0,76	1,62	0,54

15	0,015	1	0	0,44	1,47	1	1,65	0,72	2,39	0,38
	0,029	1	0	0,44	1,40	1	1,57	0,72	2,28	0,40
	0,058	1	0	0,44	1,30	1	1,46	0,72	2,11	0,43
	0,087	1	0	0,44	1,23	1	1,38	0,72	2,00	0,46
	0,12	1	0	0,44	1,19	1	1,34	0,72	1,93	0,47
	0,17	1	0	0,44	1,12	1	1,26	0,72	1,82	0,50
	0,29	1	0	0,44	1,02	1	1,14	0,72	1,66	0,55
	0,44	1	0	0,44	1,00	1	1,12	0,72	1,63	0,56
	0,58	1	0	0,44	1,00	1	1,12	0,72	1,63	0,56
18	_	1	0	0,43	1,00	1	0,02	0,70	1,63	0,57
19	_	1	0	_	_	1	0,92	0,70	_	_
20	_	1	0	_	_	1	0,92	0,70	_	_
24	_	1	0	0,41	0,87	1	0,92	0,67	1,44	0,68
25	_	1	0	_	_	1	0,92	0,67	_	_
26	_	1	0	_	_	1	0,92	0,67	_	_
30	_	1	0	_	_	1	0,92	0,67	_	_
30	_	1	0	0,39	0,76	1	0,78	0,63	1,24	0,80
36	_	1	0	0,37	0,66	1	0,66	0,60	1,07	0,95
40	_	1	0	0,35	0,57	1	0,55	0,57	0,93	1,14

Обычно на валах редуктора применяют одинаковые подшипники, поэтому выбор и проверку долговечности подшипника осуществляют по максимальной эквивалентной нагрузке $P_{\text{9 max}}$.

Долговечность подшипника L_h , ч:

$$L_h = \frac{10^6}{60n_2} \cdot \left(\frac{C}{P_{9 \,\text{max}}}\right)^3,\tag{9.5}$$

где n_2 — частота вращения кольца подшипника; C — динамическая грузоподъемность, H (см. прил. 2).

10. ВТОРОЙ ЭТАП КОМПОНОВКИ

10.1. Компоновка цилиндрического редуктора

На втором этапе компоновки (рис. 26, 27) конструктивно оформляются зубчатые колеса, валы, корпус, подшипниковые узлы и определяют данные, необходимые для проверки прочности валов.

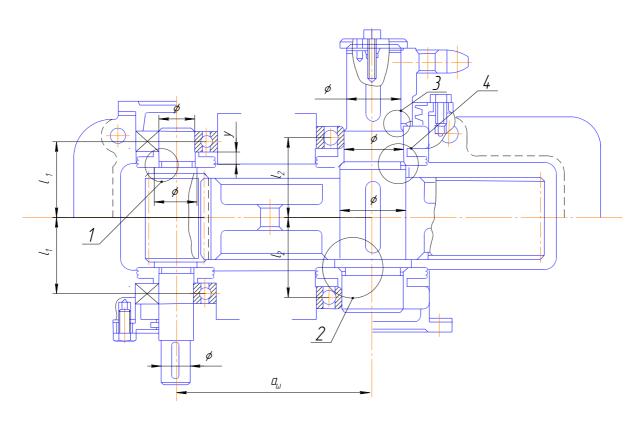


Рис. 26. Второй этап компоновки одноступенчатого редуктора.

Рис. 27. Второй этап компоновки двухступенчатого редуктора.

Второй этап компоновки выполняется в следующей последовательности:

- 1. Из первого этапа компоновки вычерчивают шестерню и колесо.
- 2. Проектируют узел ведущего вала:
- а) на расстоянии l_1 от середины редуктора проводят осевые линии и, принимая их за осевые линии подшипников, вычерчивают в разрезе подшипники (допускается вычерчивать одну половину, а для второй указать габариты). На том же диаметре вала, что и подшипники вычерчивают мазеудерживающие кольца (выступают на 1-2мм от внутренней стенки, выполняя роль маслоотбрасывающих колец), расположенные между торцами подшипников и внутренней стенкой редуктора. Фиксация мазеудерживающих колец в осевом направлении, с одной стороны осуществляется заплечниками вала, с другой боковыми поверхностями колец подшипников.
- б) вычерчивают крышки подшипников с уплотнительными прокладками и болтами. Войлочные и фетровые уплотнения применяют при использовании пластинчатой смазки, манжеты как для пластинчатой смазки, так и для жидких смазывающих материалов;
- в) переход к хвостовику вала осуществляется на 10-15мм от внешней поверхности крышки подшипника во избежание задевания муфты за головки болтов. Длину хвостовика выбирают согласно длине ступице муфты.
- 3. Узел ведомого вала вычерчивается аналогично, но имеет ряд особенностей:
- а) вал с целью фиксации зубчатого колеса в осевом направлении устанавливают в корпусе «враспор». Для этого с одной стороны вала предусматривают утолщение на 5мм, с другой устанавливают распорную втулку, чтобы обеспечить прижатие мазеудерживающего кольца к торцу втулки, а не к заплечнику вала. Место перехода вала к меньшему (на 5 мм) диаметру переносят на 2 3мм внутрь распорной втулки:
- б) переход вала с диаметра, на котором установлены подшипники, к хвостовику (5 мм) смещают на 2-3 мм во внутрь подшипника.
 - 5. Узел промежуточного вала имеет ряд особенностей:
- а) промежуточный вал не имеет концевых участков. Шестерня выполняется заодно с валом. Участок вала между шестерней и колесом имеет диаметр больше диаметра вала под зубчатое колесо.
- б) вал с целью фиксации зубчатого колеса в осевом направлении устанавливают в корпусе в распор.
- 4. На валах вычерчивают шпонки длиной на 5-10 мм меньше, чем длина ступиц.
 - 5. Измерениями уточняют расстояние l_1 и l_2 .

10.2. Компоновка червячного редуктора.

Второй этап компоновки червячного редуктора (рис. 28) состоит в следующем.

На валу червяка устанавливаем крыльчатки, с целью разбрызгивания масла и забрасывания его на колесо и подшипники. Этим обеспечивается смазывание зацепления и подшипников. Уплотняют валы резиновыми манжетами. В крышке люка размещают отдушину. Вычерчивают в нижней части корпуса редуктора (на главном виде) сливную масляную пробку и указатель из оргстекла. По размерам определенным ранее вычерчивают стенку и корпус редуктора; фланцы и нижний пояс редуктора, крюки для подъема. Устанавливают крышки подшипников (глухие и сквозные для манжетных уплотнений). Под крышки устанавливают металлические регулировочные прокладки.

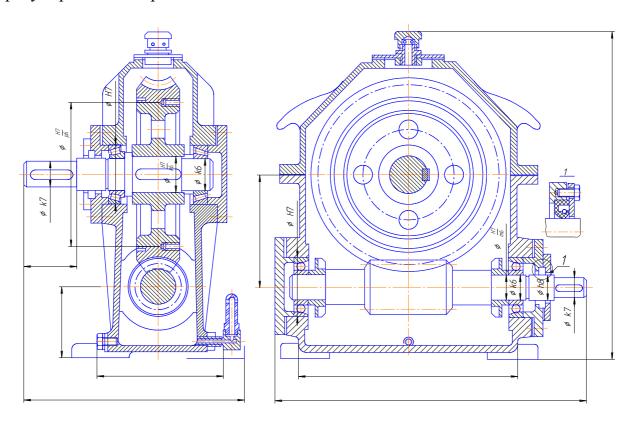


Рис. 28. Червячный редуктор с нижним расположением червяка

Вычерчивают червячное колесо, насаживая бронзовый венец на чугунный центр с натягом.

Вычерчивают на выходных концах валов червяка и червячного колеса, а также для червячного колеса призматические шпонки.

10.3. Компоновка конического редуктора.

На рис. 29 в качестве примера приведен чертеж конического редуктора.

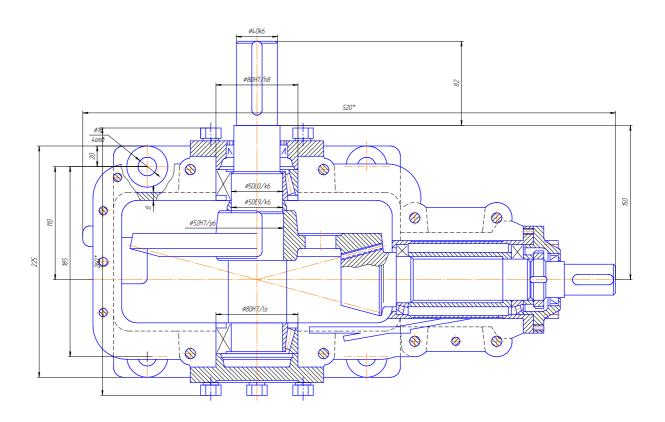


Рис. 29. Редуктор одноступенчатый конический

На втором этапе компоновки вычерчивают валы в сборе с шестерней, В соответствии колесом, подшипниковыми Т.Π. узлами И технологическими ориентировочным расчетом валов и размерами вычерчивают ведущий и ведомый вал. В корпусе редуктора для вычерчиваются отверстия под конические штифты и болты крепления корпуса к крышке редуктора.

11. ПОДБОР ШПОНОК ПО ПРОЧНОСТИ ШПОНОЧНЫХ СОЕДИНЕНИЙ

По табл. 47 выбирают шпонку (как правило, призматическую) и определяют геометрические параметры шпоночного соединения. Длину шпонки назначают из стандартного ряда: 6; 8; 10; 12; 14; 16; 18; 20; 25; 28; 32; 36; 40; 45; 50; 56; 63; 70; 80; 90; 100; 110; 125; 140; 160; 180; 200, на 5...10 мм меньше длины ступицы.

Таблица 47

Геометрические размеры призматических шпонок (ГОСТ 23360-78)

Диаметр	Сечение шпонки	Глубина	паза, мм	Фарта у 450
вала, мм	(ширина×высота), мм	втулки	вала	Фаска ×45°, мм
1012	4×4	2,5	1,8	0,080,16
1217	5×5	3,0	2,3	
1722	6×6	3,5	2,8	0,160,25
2230	8×7	4,0	3,3	
3038	10×8	5,0	3,3	
3844	12×8	5,0	3,3	
4450	14×9	5,5	3,8	0,250,40
5058	16×10	6,0	4,3	
5865	18×11	7,0	4,4	
6575	20×12	7,5	4,9	
7585	22×14	9,0	5,4	0,400,60
8595	25×14	9,0	5,4	
95110	28×16	10,0	6,4	

Проверка шпонки по напряжению смятия:

$$\sigma_{\scriptscriptstyle CM} = \frac{2T}{d_1 l_p (h - t_1)} \le \left[\sigma_{\scriptscriptstyle CM}\right], \tag{11.1}$$

где d_1 — диаметр участка вала, на котором установлена шпонка, мм; h — высота шпонки, мм; t_1 — глубина шпоночного паза, мм; l_p — рабочая длина шпонки, для прямоугольной шпонки она равна ее длине; для шпонки с закругленными торцами — длине шпонки за вычетом ширины, мм; T — крутящий момент, H·мм; $[\sigma_{cm}]$ — допускаемое напряжение смятия для шпоночных соединений, МПа (табл. 48).

Таблица 48

Допускаемые напряжения смятия шпонки [осм], МПа

Caarrena	Mamanara	Нагрузка			
Соединение	Материал ступицы	Постоянная	Переменная		
Пана намена а	Сталь	150	100		
Неподвижное	Чугун	90	60		
Подвижное	Сталь	50	30		

При расчетном напряжении смятия для шпонки значительно меньшим допускаемого, выбирают шпонку меньших размеров и расчет следует повторить. В противном случае увеличиваются габариты шпонки или используют две шпонки под углом 180° по отношению друг к другу.

12. УТОЧНЕННЫЙ РАСЧЕТ ВАЛОВ

Целью расчета является определение коэффициентов запаса прочности s в опасных сечениях вала и сопоставление его с допускаемым [s] = 1,6...2,1. Прочность обеспечивается при $s \ge [s]$.

Уточненный расчет ведущего вала (см. рис. 20) осуществляется следующим образом.

По табл. 22 определяют среднее значение $\sigma_{\rm B}$.

Предел выносливости изгиба (при симметричном цикле изгиба):

• для углеродистой стали

$$\sigma_{-1} = 0.43 \sigma_{\rm B}$$
;

• для легированной

$$\sigma_{-1} = 0.35\sigma_{\rm B} + (70...120).$$

Предел выносливости при симметричном цикле касательных напряжений:

$$\tau_{-1} \approx 0.58\sigma_{-1}$$
 (12.1)

Значения коэффициентов концентрации κ_{σ} и κ_{τ} напряжений от галтели, выточки, поперечного отверстия, шпоночной канавки приведены в табл. 49.

Таблица 49 Значения коэффициентов κ_{σ} и κ_{τ}

Vayyyayananan		Валы из стал	ли с σ _в , МПа	a
Концентратор	≤ 700	≥ 1000	≤ 700	≥ 1000
напряжения	К	σ	K	$\mathfrak{C}_{ au}$
Галтель $r/d = 0.02$	2,5	3,5	1,8	2,1
r/d = 0.06	1,85	2,0	1,4	1,53
(D/d = 1,252) 0,10	1,6	1,64	1,25	1,35
Выточка $r/d = 0.02$	1,9	2,35	1,4	1,7
r/d = 0.06	1,8	2,0	1,35	1,65
r/d = 0.10	1,7	1,85	1,25	1,5
Поперечное отверстие				
$d_0/d = 0.05025$	1,9	2,0	1,75	2,0
Шпоночная канавка	1,7	2,0	1,4	1,7
Шлицы, по внутреннему диаметру		$\kappa_{\sigma} = \kappa$	$\tau = 1.0$	

Рассмотрим сечение быстроходного вала под шпонку (рис. 20).

Концентратором напряжений является шпоночная канавка, где возникают касательные напряжения. Коэффициент запаса прочности по касательным напряжениям:

$$s_{\tau} = \frac{\tau_{-1}}{\frac{k_{\tau}}{\varepsilon_{\tau}} \tau_{\upsilon} + \psi_{\tau} \tau_{m}},$$
(12.2)

где $\psi_{\tau} = 0,1$ — параметр асимметрии цикла напряжений (кручение); τ_{-1} — предел выносливости стали при симметричном цикле кручения; ϵ_{τ} — масштабный фактор для напряжений кручения по табл. 50; $k_{\tau}/\varepsilon_{\tau}$ — приведены в табл. 51 (примечание); $\tau_{\rm o}$, $\tau_{\rm m}$ — средние напряжения цикла для кручения:

$$\tau_{v} = \tau_{m} = \frac{\tau_{\text{max}}}{2} = \frac{T_{1}}{2W_{K}}$$
(12.3)

где W_{K} — момент сопротивления вала по кручению (сечение шпоночный паз):

$$W_K = \frac{\pi d^3}{16} - \frac{bh(d-t)^2}{2d} \tag{12.4}$$

где d – диаметр вала в рассматриваемом сечении; b и t – ширина и глубина шпоночного паза (см. табл. 47).

Таблица 50

Значение ε_{σ} и ε_{τ}

Сталь	Диаметр вала, мм							
Сталь	20	30	40	50	70	100	200	
Углеродистая								
ϵ_{σ}	0,92	0,88	0,85	0,82	0,76	0,70	0,61	
$\epsilon_{ au}$	0,83	0,77	0,73	0,70	0,65	0,59	0,52	
Легированная								
ϵ_{σ}	0,83	0,77	0,73	0,70	0,65	0,59	0,52	
$\mathcal{E}_{ au}$								

Значение k_{σ} /	\mathcal{E}_{σ} для	валов с напрессованными деталями
-------------------------	----------------------------	----------------------------------

d, мм	σ _в , МПа						
	600	700	800	900			
14	2,0	2,3	2,6	3,0			
20	2,35	2,6	3,0	3,4			
30	2,6	2,8	3,3	3,8			
40	2,7	3,2	3,65	4,0			
50	3,3	3,6	4,0	4,5			

Примечание: для касательных напряжений $k_{ au}$ / $\varepsilon_{ au}=0.6k_{\sigma}$ / $\varepsilon_{\sigma}+0.4$

Коэффициент запаса прочности по нормальным напряжениям:

$$S_{\sigma} = \frac{\sigma_{-1}}{\frac{k_{\sigma}}{\varepsilon_{\sigma}} \sigma_{\upsilon} + \psi_{\sigma} \sigma_{m}},$$
(12.5)

где $\sigma_m = \frac{4F_a}{\pi d^2}$ — среднее напряжение цикла нормальных напряжений.

Параметры асимметрии цикла напряжений (растяжение, изгиб):

 ψ_{σ} = 0,2 – для углеродистых сталей $\sigma_{\scriptscriptstyle B}$ = 650...750 МПа;

 $\psi_{\sigma} = 0,25...03$ – для легированных сталей.

Результирующий коэффициент запаса прочности:

$$s = \frac{s_{\sigma} s_{\tau}}{\sqrt{s_{\sigma}^2 + s_{\tau}^2}} \tag{12.6}$$

Рассмотрим уточненный расчет ведомого вала (см. рис. 22).

<u>Сечение I-I</u>. Концентратор напряжений — в сечении «шпоночное соединение».

Суммарный изгибающий момент, Н·мм:

$$M_{\Sigma} = \sqrt{M_x^2 + M_y^2} \tag{12.7}$$

где M_x , M_y — изгибающие моменты (определены в разд. 8). Момент сопротивлений кручению, мм³:

$$W_K = \frac{\pi d^3}{16} - \frac{bt_1(d - t_1)^2}{2d}$$
 (12.8)

где d — диаметр вала в рассматриваемом сечении; b и t — ширина и глубина шпоночного паза (см. табл. 46).

Момент сопротивлений изгибу, мм³

$$W = \frac{\pi d^3}{32} - \frac{bt_1(d - t_1)^2}{2d}$$
 (12.9)

Амплитуда и среднее напряжение цикла касательных напряжений:

$$\tau_{v} = \tau_{m} = \frac{T_{2}}{2W_{V}} \tag{12.10}$$

Амплитуда нормальных напряжений изгиба:

$$\sigma_{v} = \frac{M_{\Sigma}}{W} \tag{12.11}$$

Коэффициенты запаса прочности по нормальным и по касательным напряжениям:

$$S_{\sigma} = \frac{\sigma_{-1}}{\frac{k_{\sigma}}{\varepsilon_{\sigma}} \sigma_{\upsilon} + \psi_{\sigma} \sigma_{m}};$$

$$S_{\tau} = \frac{\tau_{-1}}{\frac{k_{\tau}}{\varepsilon_{\tau}} \tau_{\upsilon} + \psi_{\tau} \tau_{m}},$$

где κ_{σ} , κ_{τ} , ϵ_{σ} , ϵ_{τ} , k_{τ} / ϵ_{τ} - см. табл. 49, 50, 51.

Результирующий коэффициент запаса прочности:

$$s = \frac{s_{\sigma} s_{\tau}}{\sqrt{s_{\sigma}^2 + s_{\tau}^2}} \tag{12.12}$$

Аналогично определяют коэффициенты запаса прочности в оставшихся опасных сечениях, где концентраторами напряжений являются посадка подшипника, переход диаметра вала от большего к меньшему, сечение «шпоночная канавка».

13. ВЫБОР СОРТА МАСЛА

В редукторах в зависимости от окружной скорости ведущего вала υ_s применяют картерное или циркуляционное смазывание.

При $\upsilon_s \le 12$ м/с для зубчатых передач и $\upsilon_s \le 8$ м/с для червячных передач назначают картерное смазывание. Оно осуществляется погружением зубчатых колес на высоту зуба; для червяка, расположенного снизу — на высоту витка. При таком смазывании объем масляной ванны принимают из расчета 0,5...0,8 л на 1кВт мощности.

Сорт масла определяют по табл. 52, 53.

Таблица 52

Значения вязкости масла.

Контактные	Кинематическая вязкость, $10^{-6} \text{ m}^2/\text{c}$,				
напряжения $\sigma_{\scriptscriptstyle H}$,	при	при скорости скольжения $\upsilon_{\rm s}$, м/с			
МПа	≤ 2	25	≥ 5		
	Зубчатые	передачи			
До 600	34	28	22		
6001000	60	50	40		
10001200	70	60	50		
Червячные передачи					
До 200	25	20	15		
200250	32	25	18		
250300	40	30	23		

Таблица 53

Сорта масел, применяемые при смазывании зубчатых и червячных передач.

Сорт масла	Марка	Кинематическая вязкость, 10 ⁻⁶ м ² /с
Индустриальное	И-12A И-20A И-25A И-30A И-40A И-50A И-70A И-100A	1014 1723 2427 2833 3545 4755 6575 90118
Авиационное	MC-14 MK-22 MC-20	14 22 20,5 при 100 °C
Цилиндровое	52	4459 при 100 °C

14. ТЕПЛОВОЙ РАСЧЕТ ЧЕРВЯЧНОГО РЕДУКТОРА

Тепловой расчет редуктора проводится для червячных и зубчаточервячных редукторов.

Условие работы редуктора без перегрева:

$$\Delta t = t_{M} - t_{G} = \frac{P_{q} \left(1 - \mu\right)}{k_{s} A} \le \left[\Delta t\right] \tag{14.1}$$

где $t_{\rm M}$ — температура масла, °C; $t_{\rm B}$ — температура воздуха в помещении, °C; $P_{\rm H}$ — мощность на валу червяка, Вт; η — КПД редуктора; k_t — коэффициент теплопередачи, k_t = 11...17 Вт/(м²·°С); A=20 $a^{1,7}$ — площадь теплопередающей поверхности корпуса редуктора (зависит от межосевого расстояния), м²; $[\Delta t]$ =40...60° — допускаемый перепад температур масла и окружающего воздуха.

В случае, если работа редуктора без перегрева не обеспечивается, то площадь охлаждающей поверхности увеличивают ребрами.

15. ПРОВЕРКА ЧЕРВЯКА НА ЖЕСТКОСТЬ

Червячный вал проверяют по стреле прогиба червяка. Момент инерции поперечного сечения червяка, мм⁴:

$$J_{x} = \frac{\pi d_{f1}^{4}}{64} \left(0.375 + 0.625 \frac{d_{a1}}{d_{f1}} \right)$$
 (15.1)

Прогиб червяка, мм:

$$f = \frac{l_1^3 \sqrt{F_{t1}^2 + F_{r1}^2}}{48EJ_x} < [f]$$
 (15.2)

где E — модуль упругости, для стали E = $2 \cdot 10^5$ МПа. Допускаемый прогиб червяка:

$$[f] = (0,005...0,01)m.$$

16. ПОСАДКИ ОСНОВНЫХ ДЕТАЛЕЙ РЕДУКТОРА

Посадки основных деталей редуктора назначают, пользуясь табл. 54.

Таблица 54

Посадки основных деталей редуктора

	Участок работы,	Рекомендуемая			
Соединение	режим работы	посадка			
Посадк	си ступиц и червячных колес на в				
Прямозубое колесо со	Рабочий участок вала	<i>H</i> 7			
шпонкой		$\overline{p6}$			
	Направляющий участок	р0 H7			
	вала	$\frac{11}{d11}$			
		H7 : H7			
Косозубое коническое или	Рабочий участок вала	$\frac{17}{r6}$, $\frac{17}{s6}$			
червячное колесо		70 30			
	Направляющий участок	<i>H</i> 7			
	вала	$\overline{d11}$			
Посадки зубч	атого венца на ступицу червячн	ого колеса			
	Спокойная нагрузка	H7			
		$\overline{p6}$			
	Умеренные толчки	. <u>Н7</u> ; Н7			
	_	$\frac{117}{r6}, \frac{117}{n6}$			
Посады	и звездочек цепных передач на в				
Звездочка со шпонкой	Спокойная нагрузка	H7			
звездо жа со шпоткоп	Chokoman narpyska	$\overline{k6}$			
Звездочка со шпонкой	Умеренные толчки	H7; H7			
obego ma co minom	v mop omissio rom mar	$\frac{1}{m6}$ $\frac{1}{n6}$			
Посадк	си шкивов ременных передач на в	<i>валы</i>			
Шкив со шпонкой	Спокойная нагрузка	<u>H7</u>			
		$\overline{k6}$			
Шкив со шпонкой	Умеренные толчки	$\underline{H7}$; $\underline{H7}$			
T		m6 n6			
	одшипников качения в корпус и н				
Посадка в корпус	Легкий или нормальный	J_s7			
Посадка на вал	режим работы	$j_s7; k6$			
Посадка в корпус	Нормальный или тяжелый	H7; k6			
Посадка на вал	режим работы	k6; m6			
Посадка стаканов и крышек в корпус					
Стакан	Подвижный при сборке	H7/j _s 6			
Стакан	Неподвижный при сборке	H7/k6			
Крышка	Подвижная при сборке	H7/d11			
Крышка	Неподвижная при сборке	H7/k6			

17. ПОДБОР МУФТЫ

Расчетный момент муфты (рис. 30):

$$T_{\text{pacy}} = K \cdot T, \tag{17.1}$$

где K — коэффициент режима работы муфты, при спокойной нагрузке K = 1,15...1,4; при переменной нагрузке K = 1,5...2,0; при ударной нагрузке K = 2,5...3,0; T — передаваемый крутящий момент, $H \cdot M^3$.

Зная передаваемый крутящий момент по табл. 55 определяют ориентировочные геометрические размеры муфты.

Для МУВП материал полумуфт — чугун СЧ 20 или сталь 35 (сталь 35Л), материал пальцев сталь 45 и выше, материал втулок резина, стойкая в минеральных маслах, число пальцев — от 4 (T = 125 H·м) до 10 (T = 1000 H·м).

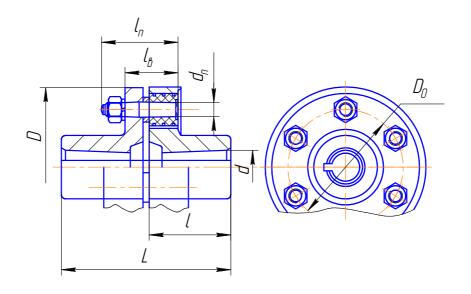


Рис. 30. Муфта упругая втулочно-пальцевая (МУВП).

Таблица 55 Муфты упругие втулочно-пальцевые, исполнение полумуфт 1 (см. рис.30)

[T],	Диаметр вала,	D,	D_{0} ,	$d_{\scriptscriptstyle \Pi},$	L,	Z	l_{Π} ,	l, mm	$l_{\scriptscriptstyle \mathrm{B}},$	ω,
Н∙м	MM	MM	MM	MM	MM		MM		MM	c ⁻¹
31,5	16, 18	90	58	10	84	4	19	40	15	660
63	20, 22	100	68	10	104	6	19	50	15	585
125	25, 28	120	84	14	125	4	33	60	28	497
250	32, 36	140	100	14	165	6	33	80	28	419
	40, 45	140	100	14	225	6	33	110	28	419
500	40, 45	170	120	18	226	6	42	110	36	351
710	45, 50, 56	190	140	18	226	8	42	110	36	314

[T],	Диаметр вала,	D,	D_0 ,	$d_{\scriptscriptstyle \Pi},$	L,	Z	$l_{\Pi},$	l, mm	$l_{\scriptscriptstyle \mathrm{B}},$	ω,
Н·м	MM	MM	MM	MM	MM		MM		MM	c^{-1}
1000	50, 56	220	170	18	226	10	42	110	36	278
	63	220	170	18	226	10	42	140	36	278
2000	63, 71	250	190	24	288	10	52	140	44	235
	80, 90	250	190	24	348	10	52	170	44	235
4000	80, 90	320	242	30	350	10	66	170	56	178
8000	100, 110, 125	400	-	-	432	10	-	210	-	-

Пример обозначения упругой втулочно-пальцевой муфты с номинальным вращающимся моментом 250 H⋅м, диаметром посадочного отверстия d=40мм, исполнения полумуфт 1, климатическим исполнением У, категории 3: Муфта 250–40–1–УЗ ГОСТ 21424-93.

Проверочный расчет муфты МУВП по давлению пальца на втулку:

$$p = \frac{2T_{pacq}}{zD_0 d_n l} \le [p], \tag{17.2}$$

где z — количество пальцев; D_0 — диаметр центров пальцев; $d_{\rm п}$ — диаметр пальцев; l — длина упругого элемента; [p] — допускаемое давление, для резиновых втулок [p] = 2 МПа.

Проверочный расчет пальцев на изгиб:

$$\sigma_u = \frac{T_p l_n}{0.1 d_n^3 z} \le [\sigma_u] \tag{17.3}$$

где $[\sigma_{\rm u}]$ – допускаемое напряжение изгиба, $[\sigma_{\rm u}]$ =60...80МПа; $l_{\rm n}$ – длина пальцев.

ПРИМЕРЫ РАСЧЕТА

Расчет привода с одноступенчатым цилиндрическим редуктором и цепной передачей

Перед проведением расчета привода необходимо ознакомиться с теоретической частью.

1. Исходные данные

Кинематическая схема привода (рис. 31). Потребляемая мощность P=3 кВт. Угловая скорость на выходном валу $\omega_3=10$ рад/с. Срок службы редуктора — 12000 ч.

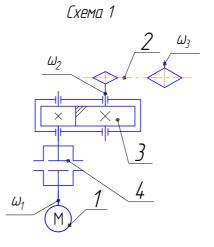


Рис 31. Кинематическая схема привода: 1 — электродвигатель; 2 — цепная передача, 3 — цилиндрический косозубый редуктор; 4 — муфта.

2. Кинематический и силовой расчет привода

1. Определим общий КПД привода, с учетом потерь в подшипниках (2.1):

$$\eta \ = \eta_1 \eta_7 \eta_6 \eta_8 \eta_8 = 0.97 \cdot 1.0 \cdot 0.93 \cdot 0.99 \cdot 0.99 = 0.88,$$

где η_1 , η_7 , η_6 , η_8 — соответственно КПД зубчатой передачи, муфты, цепной передачи и подшипников качения (см. табл. 1).

2. Необходимая мощность электродвигателя (2.2):

$$P_1 = P_3/\eta = 3/0.88 = 3.4 \text{ kBt}.$$

- 3. Выбираем по табл. 2 асинхронный электродвигатель общего назначения с синхронной частотой вращения 1000 мин⁻¹ 4A112MB6У3, $P_3 = 4 \text{ кBr}$, $n_3 = 950 \text{мин}^{-1}$.
 - 2.4 Находим общее передаточное число привода (2.3):

$$i = \omega_1/\omega_3 = 99,43/10 = 9,9$$

где $\omega_1 = \pi n_3/30 = 3,14.950/30 = 99,43$ рад/с.

По табл. 3 с учетом стандартного ряда передаточных чисел по ГОСТ 2185-66 выбираем передаточное отношение для зубчатого цилиндрического одноступенчатого редуктора $i_1 = 4$. Тогда передаточное отношение цепной передачи:

$$i_2 = i/i_1 = 9.9/4 = 2.47$$

что соответствует интервалу передаточных чисел для цепной передачи (см. табл. 3).

- 5. Находим угловые скорости, частоту вращения, мощности и моменты на валах привода.
 - крутящий момент на валу электродвигателя (2.6):

$$T_1 = P_1/\omega_1 = 3400/99,43 = 34,19 \text{ H} \cdot \text{M};$$

• частота вращения на выходном валу редуктора:

$$n_2 = n_3/i_1 = 950/4 = 237,5 \text{ мин}^{-1};$$

• угловая скорость второго вала ω_2 :

$$\omega_2 = \omega_1/i_1 = 99,43/4 = 24,85 \text{ pag/c},$$

• мощность:

$$P_2 = P_1 \eta_1 \eta_7 \eta_8 = 3.4 \cdot 0.97 \cdot 1.0.99 = 3.3 \text{ kBT},$$

где η_1 , η_7 , η_8 — соответственно КПД зубчатой передачи, муфты и подшипников качения (см. табл. 1);

• крутящий момент на втором валу:

$$T_2 = P_2/\omega_2 = 3300/24,85 = 132,8 \text{ H} \cdot \text{M};$$

• мощность:

$$P_3 = P_2 \eta_6 \eta_8 = 3,3.0,93.0,99 = 3,0 \text{ kBt},$$

где η_6 , η_8 — соответственно КПД, подшипников качения и цепной передачи (см. табл. 1);

• угловая скорость:

$$\omega_3 = \omega_2/i_2 = 24.85/2.47 = 10 \text{ pag/c},$$

где i_2 – передаточное отношение цепной передачи;

• крутящий момент

$$T_3 = P_3/\omega_3 = 3000/10,06 = 298,2 \text{ H}\cdot\text{M}.$$

3. Расчет цепной передачи

Исходные данные:

- мощность ведущей звездочки $P_2 = 3.3$ кВт;
- момент на ведущей звездочки $T_2 = 132,8 \text{ H·м}$;
- угловая скорость ведущей звездочки $\omega_2 = 24,85c^{-1}$;
- частота вращения $n_2 = 237,5$ мин⁻¹;
- передаточное отношение цепной передачи $i_2 = 2,47$.

С учетом небольшой передаваемой мощности, предварительно выбираем однорядную приводную роликовую цепь марки ПР.

По табл. 19 выбираем число зубьев ведущей звездочки $z_1 = 25$ (предпочтительнее выбирать z_1 нечетное).

С учетом передаточного отношения цепной передачи:

$$z_2 = z_1 i_2 = 25.2,47 = 61,75,$$

принимаем z_2 = 63 (округлили до нечетного целого числа).

Коэффициент эксплуатации передачи:

$$K_9 = K_{\text{I}} K_{\text{a}} K_{\text{H}} K_{\text{p}} K_{\text{cM}} K_{\text{II}} = 1 \cdot 1 \cdot 1 \cdot 1, 25 \cdot 1, 3 \cdot 1 = 1,625.$$

Шаг цепи (формула 3.38)):

$$t \ge 28 \cdot \sqrt[3]{\frac{T_2 K_3}{z_1 [q] z_p}} = 28 \cdot \sqrt[3]{\frac{122,33 \cdot 1,625}{25 \cdot 28,3 \cdot 1}} = 18,33 \text{ MM}.$$

Зная шаг цепи и угловую скорость ведущей звездочки по табл. 20 определяем [q] = 28,3 – допускаемое давление в шарнирах цепи, МПа.

По табл. 18 принимаем цепь с большим ближайшим шагом ПР-19,05-3180, t=19,05 мм, $F_{\rm p}=31,8$ кН, q=1,9 кг/м, A=105,8 мм².

Скорость цепи (средняя) по формуле (3.39):

$$\upsilon = \frac{n_2 z_1 t}{60 \cdot 1000} = \frac{237.5 \cdot 25 \cdot 19.05}{60 \cdot 1000} = 1.8 \text{ M/c}.$$

Окружная сила, передаваемая цепью (3.40):

$$F_t = \frac{P_2}{D} = \frac{3300}{1.8} = 1833,3 \text{ H}.$$

Допускаемая окружная сила (3.41):

$$[F_t] = A[q] = 105,8.28,3 = 2994,14 \text{ H}.$$

Расчет цепи на износостойкость шарниров (3.42):

$$F_t \le [F_t]/K_s = 2994,14/1,625 = 1842,5 \text{ H}.$$

Данное условие соблюдено, следовательно, выбранная цепь по условию на износостойкость шарниров подходит.

Межосевое расстояние (3.43):

$$a = 40t = 40.19,05 = 762 \text{ MM}.$$

Определяем число звеньев цепи (3.44):

$$z_3 = 2a/t + (z_1 + z_2)/2 + [(z_2 - z_1)/2\pi]^2 t/a;$$

$$z_3 = 2.762/19,05 + (25+63)/2 +$$

$$+ [(63 - 25)/2.3,14]^2.19,05/762 = 123,06.$$

Округляем до целого четного числа z_3 =124. Расчетная длина цепи (3.45):

$$L = z_3 t = 124.19,05 = 2362,2$$
 mm.

Уточним межосевое расстояние по формуле (3.46):

$$a = \frac{19,05}{4} \left(124 - \frac{63 + 25}{2} + \sqrt{\left(124 - \frac{63 + 25}{2}\right)^2 - 8\left(\frac{63 - 25}{2 \cdot 3,14}\right)^2} \right) = 753 \text{ MM}.$$

Для свободного провисания цепи уменьшим данное расстояние на 0,4%, т.е.:

$$753 - 0.4\% = 749.988$$
 MM.

Окончательно принимаем a = 750 мм. Число ударов цепи в 1 с (3.47):

$$v = 2z_1\omega_2/\pi z_3 \le [v] = 508/t \implies$$
 $v = 2 \cdot 25 \cdot 24,85/3,14 \cdot 124 \le [v] = 508/19,05;$
 $v = 3,19c^{-1} \le 26,66 -$ условие $v \le [v]$ выполняется.

Силы, действующие на цепь: окружная: F_t (определена выше); центробежная:

$$F_{\nu} = q \nu = 1.8 \cdot 1.9^2 = 6.5 \text{ H}$$

от провисания цепи:

$$F_f = k_f qg a_f = 3.38 \cdot 1.9 \cdot 9.81 \cdot 0.753 = 33.4 \text{ H}.$$

Примем $\gamma = 45^{\circ}$, тогда

$$k_f = 1 + 5\cos^2 45 = 3.38.$$

Коэффициент запаса прочности (3.48):

$$h = F_{p}/(F_{t}K_{\pi} + F_{v} + F_{f}) \ge [h];$$

$$h = 31800/(1833, 3.1 + 3.42 + 33.4) = 17.0 \ge 7.46$$

Следовательно, по запасу прочности цепь проходит. Сила, действующая на валы и опоры (3.49):

$$F_{\rm B} = F_t + 2F_f = 1833,3 + 2.33,4 = 1900,1$$
H

Принимаем материал для звездочек сталь 40, а расчет основных параметров сведем в табл. 56.

Определение основных параметров звездочек

Параметры	Ведущей	Ведомой
Диаметр, мм:		
делительный d	$d = t/\sin(180/z) = 146$	$d = t/\sin(180/z) = 367$
окружности выступов d_a	$d_a = t[0.5 + ctg(180/z)] = 149.4$	$d_a = t[0.5 + ctg(180/z)] = 317.3$
окружности впадин d_f	$d_f = d - 2r = 133,94$	$d_f = d - 2r = 133,94$
Радиусы, мм:		
впадин r	$r = 0.5025d_1 + 0.05 = 6.03$	$r = 0.5025d_1 + 0.05 = 6.03$
закругления зуба r_1	$r_1 = 1.7d_1 = 20.25$	$r_1 = 1.7d_1 = 20.25$
Расстояние от вершины зуба		
до линии центров закругления	$h = 0.8d_1 = 9.53$	$h = 0.8d_1 = 9.53$
<i>h</i> , мм		
Толщина, мм:		
обода S	$S = 0.5 \ t = 9.15$	S = 0.5t = 9.15
диска звездочки ∆	$\Delta = 0.7t = 12.81$	$\Delta = 0.7t = 12.81$
Ширина зуба звездочки <i>b</i>	b = 0.93B - 0.15 = 16.36	b = 0.93B - 0.15 = 16.36
Длина ступицы $l_{\rm c}$, мм	$l_{\rm c} = (23)d_{\rm B} = 64$	$l_{\rm c} = (23)d_{\rm B} = 72$
Диаметры ступицы d_{c} , мм	$d_{\rm c} = d_{\rm B} + 2S_{\rm c} = 76$	$d_{\rm c}=d_{\rm B}+2S_{\rm c}=80$
Толщина ступицы S_c , мм	$S_c = (0,82,5)t = 22$	$S_c = (0,82,5)t = 22$

4. Расчет закрытой цилиндрической передачи

Исходные данные:

- мощность и момент быстроходного вала передачи $P_1 = 3,4$ кВт, $T_1 = 34,19$ Н·м;
 - угловая скорость зубчатого колеса $\omega_2 = 24,85$ рад/с;
 - передаточное отношение $i_2 = 4$.

Выбираем материал шестерни и колеса сталь 40, термообработка – улучшение, твердость поверхности зубьев колеса HB200, шестерни HB220 (см. табл. 22).

Допускаемые напряжения (4.1):

$$\left[\sigma_H\right] = \frac{\sigma_{H \, \text{lim} \, b} K_{HL}}{\left[S_H\right]}$$

$$\sigma_{H \text{limb}} = 2 \text{HB} + 70 = 2.200 + 70 = 470 \text{ МПа для колеса (см. табл. 23);}$$
 $\sigma_{H \text{limb}} = 2 \text{HB} + 70 = 2.220 + 70 = 510 \text{ МПа для шестерни;}$
 $K_{HL} = 1;$
 $[S_H] = 1,2 \text{ (при улучшении } [S_H] = 1,1...1,2).$

Для колеса:

$$[\sigma_{H1}] = \frac{470 \cdot 1}{1.2} = 391,67 \text{ M}\Pi a.$$

Для шестерни:

$$[\sigma_{H2}] = \frac{510 \cdot 1}{1.2} = 425 \text{ M}\Pi a.$$

Для передач с различной твердостью шестерни и колеса (4.3):

$$[\sigma_H] = 0.45([\sigma_{H1}] + [\sigma_{H2}]) \le 1.23[\sigma_H]_{min} =$$
 $= 0.45(391.67 + 425) \le 1.23.391.67 \text{ МПа}$
 $[\sigma_H] = 367 \le 481.7 - \text{условие выполнено}.$

Коэффициент отношения ширины венца к диаметру шестерни (4.4):

$$\psi_{bd} = 0.5 \psi_{ba} (i_2 + 1) = 0.5 \cdot 0.315 \cdot (4 + 1) = 0.79$$

где $\psi_{ba} = 0.315$ (табл. 25).

Межосевое расстояние зубчатой передачи (4.5):

$$a_{\omega} = K_{a}(i+1)\sqrt[3]{T_{2}K_{H\beta}/\psi_{ba}i^{2}[\sigma_{H}]^{2}} =$$

$$= 430(4+1)\sqrt[3]{132.8 \cdot 1.2/0.315 \cdot 4^{2} \cdot 367^{2}} = 132.6 \text{ mm}.$$

Округляем до стандартного по ГОСТ 2185-66 a_{ω} = 160 мм. Модуль зацепления (4.6):

$$m = (0.01...0.02)a_{\omega} = (0.01...0.02) \cdot 160 = 1.6...3.2 \text{ MM}.$$

Выбираем модуль m = 2,5 мм.

4.8 Число зубьев шестерни и колеса

$$z_{\Sigma}=2a_{\omega}\cos\beta/m=2\cdot160\cdot\cos10^{\circ}/2,5=126.$$

 $z_{1}=126\cdot\cos10^{\circ}/(4+1)=25;$ $z_{2}=126-25=101$

4.9 Уточненное значение угла наклона зубьев:

$$\cos \beta = \frac{z_{\Sigma} \cdot m_n}{2a_{\omega}} = \frac{126 \cdot 2.5}{2 \cdot 160} = 0.984; \ \beta = 10.14^{\circ}$$

Основные геометрические размеры зубчатых колес приведены в табл. 57

Таблица 57 **Геометрические параметры зубчатых колес, мм**

Параметр	Шестерня	Колесо зубчатое
Делительный диаметр	$d_1 = 25 \cdot 2,5/\cos\beta = 63,5$	$d_2 = 101 \cdot 2,5/\cos\beta = 256,5$
Диаметр вершин зубьев	$d_{a1} = 63.5 + 2.2.5 = 68.5$	$d_{a2} = 256.5 + 2.2.5 = 261.5$
Диаметры впадин	$d_{f1} = 63.5 - 2.5 \cdot 2.5 = 57.25$	$d_{f2} = 252 - 2.5 \cdot 2.5 = 251.5$
Ширина венца колеса	$b_1 = 50,4 + (25) = 52,455,4$	$b_2 = 0.315 \cdot 160 = 50.4$

Окружная скорость зубчатой передачи (4.8):

$$9 = \frac{\omega_1 d_1}{2 \cdot 10^3} = \frac{99,43 \cdot 63,5}{2 \cdot 10^3} = 3,15 \text{ m/c}$$

Назначаем для передачи 7-ю степень точности.

Силы действующие в зацеплении:

• окружная сила:

$$F_t = 2.10^3 T_1/d_1 = 2.10^3.34,19/63,5 = 1077 \text{ H};$$

• радиальная сила:

$$F_{\rm r} = F_{\rm t} t g \alpha_{\rm o} / \cos \beta = 1077 \cdot t g 20^{\circ} / \cos 10,14^{\circ} = 398 \text{ H}$$

где, α_{ω} = 20° – угол зацепления;

• осевая сила:

$$F_a = F_t \text{tg}\beta = 1077 \text{tg}10,14^\circ = 193 \text{ H}.$$

Расчетные коэффициенты динамической нагрузки определяем по табл. 28:

$$K_{H_V} = 1.02$$
 и $K_{F_V} = 1.03$.

Проверка по контактным напряжениям (4.9):

$$\sigma_{H} = Z_{H} Z_{M} Z_{\varepsilon} \frac{i \pm 1}{i} \sqrt{\frac{10^{3} T_{2} K_{H\alpha} K_{H\beta} K_{H\nu} (i \pm 1)}{2a_{\omega}^{3} \psi_{ba}}} \leq [\sigma_{H}];$$

$$\sigma_H = 1,76 \cdot 275 \cdot 0,77 \frac{4+1}{4} \sqrt{\frac{10^3 \cdot 132,8 \cdot 1,04 \cdot 1,12 \cdot 1,05 \cdot (4+1)}{2 \cdot 160^3 \cdot 0,315}} = 256,2 \le 367,$$

где $Z_H = \sqrt{2/\sin 2\alpha_\omega}$ — коэффициент, учитывающий форму сопряженных поверхностей зубьев (для нормальных прямозубых колес при $\alpha_\omega = 20^\circ Z_H = 1,76$); $Z_{\rm M} = 275~{\rm M}\Pi a^{1/2}$ — коэффициент учитывающий механические свойства материала колес (сталь); $z_\varepsilon = \sqrt{1/\varepsilon_\alpha} = \sqrt{1/1,7} = 0,77$ — коэффициент суммарной длины контактных линий; ε_α - коэффициент торцового перекрытия.

$$\varepsilon_{\alpha} = \left[1,88 - 3,2\left(\frac{1}{z_1} + \frac{1}{z_2}\right)\right]\cos\beta = \left[1,88 - 3,2\left(\frac{1}{25} + \frac{1}{101}\right)\right]\cos 10,14 = 1,7$$

 K_{Ho} — см. табл. 28; $K_{H\alpha}$ — см. табл. 29; $K_{H\beta}$ — см. табл. 26; ψ_{ba} — коэффициент ширины венца зубчатого колеса (см. табл. 25).

Из табл. 30:

$$Y_{F1} = 3.9 \text{ и } Y_{F2} = 3.6.$$

Из табл. 31 при улучшении:

$$\left[\sigma_{F}\right] = \frac{1,8HB}{\left[S_{F}\right]} = \frac{1,8 \cdot 220}{1,75} = 226,3 \text{ M}\Pi a,$$

где

$$[S_F] = [S_F]'[S_F]'' = 1,75 \cdot 1 = 1,75.$$

Расчетное напряжение изгиба в основании ножки зуба шестерни (4.11):

$$\sigma_{F1} = Y_{F1}F_tK_{F\beta}K_{F\nu}Y_{\beta}/b_1m > [\sigma_{F1}];$$

$$\sigma_{F1} = 3.9 \cdot 1077 \cdot 1.25 \cdot 1.11 \cdot 0.93 / 54 \cdot 2.5 = 40.1 > 226.3 \text{ M}\Pi a.$$

где
$$Y_{\beta} = 1 - \beta/140 = 1 - 10,14/140 = 0,93$$

Условие выполнено, следовательно, зубчатая передача по напряжениям изгиба проходит.

5. Предварительный расчет валов и конструктивные размеры корпуса редуктора

Диаметр выходного конца ведущего вала (формула (7.1)) при $T_1=34,19$ H·м:

$$d_1 \ge \sqrt[3]{\frac{16T_1}{\pi[\tau_k]}} = \sqrt[3]{\frac{16 \cdot 34,19 \cdot 10^3}{3,14 \cdot 15}} = 22,65 \,\mathrm{mm}$$

Полученный результат округляем до ближайшего большего значения из стандартного ряда: $d_1 = 24$ мм.

Так как выходной конец выходного вала непосредственно соединен с валом электродвигателя, из прил. 1 приложения выбираем диаметр $d_1 = 32$ мм.

Диаметр выходного конца ведомого вала:

$$d_2 \ge \sqrt[3]{\frac{16T_2}{\pi[\tau_k]}} = \sqrt[3]{\frac{16 \cdot 122,33 \cdot 10^3}{3,14 \cdot 15}} = 34,677 \,\mathrm{MM}.$$

Полученные результаты округляем до ближайшего большего значения из стандартного ряда $d_1 = 32$ мм, $d_2 = 36$ мм.

Диаметр вала между выходным концом и посадочным местом под подшипник должен быть $d_{\rm B} < d_{\rm I} < d_{\rm 3}$ и кратным 5.

Для ведущего вала: $d_{\scriptscriptstyle \rm B} = 32$ мм, $d_{\scriptscriptstyle \rm II} = 35$ мм, $d_3 = 40$ мм.

Для ведомого вала: $d_{\rm B} = 36$ мм, $d_{\rm H} = 40$ мм, $d_3 = 45$ мм (рис. 31).

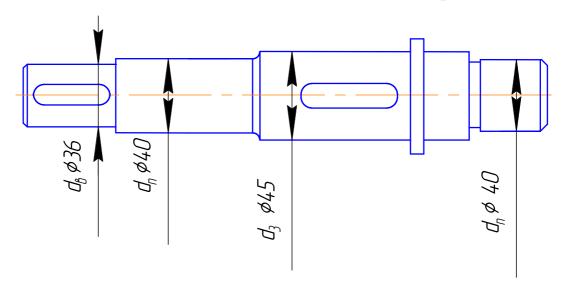


Рис. 32 Ведомый вал редуктора

Определение параметров корпуса и крышки редуктора.

Расчетное значение толщины стенок корпуса и крышки конического редуктора (табл. 58) округляем до нормального ряда чисел (не менее 8).

Таблица 58 Расчет параметров корпуса и крышки редуктора, мм

Элементы корпуса	Расчет значений
Толщина стенок	
корпуса	$\delta = 0.025 \cdot 160 + 1 = 5 \cong 8$
крышки	$\delta_1 = 0.032 \cdot 160 + 1 = 3.12 \cong 8$
Толщина фланцев	
верхнего	b = 1.5.8 = 12
нижнего	p = 2,35.8 = 19

Диаметр болтов (округляем согласно нормальному ряду диаметров резьбы):

• фундаментных:

$$d_1 = 1,25\sqrt[3]{2 \cdot T_2} = 1,25\sqrt[3]{2 \cdot 132,8} \cong 8 \text{ mm};$$

• крепящих крышку к корпусу подшипников:

$$d_2 = (0,7...0,756) \cdot 8 \cong 6$$
MM;

• соединяющих крышку с корпусом:

$$d_3 = (0,5...0,6)d_1 = 6$$
MM

6. Первый этап компоновки зубчатого цилиндрического редуктора

Первый этап компоновки (см. разд. 8), выполняется на миллиметровой бумаге (рис. 33).

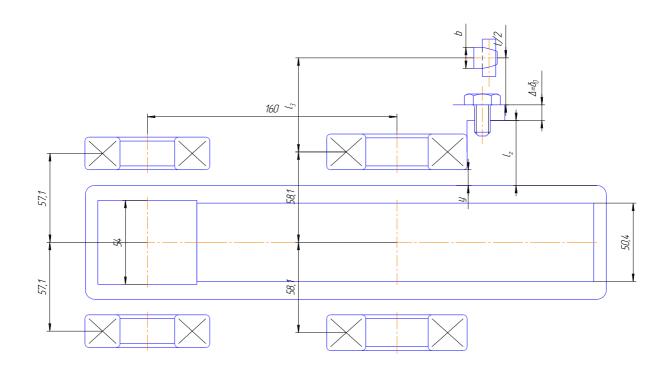


Рис. 33. Первый этап компоновки цилиндрического одноступенчатого редуктора

Предварительно по диаметрам вала выбираем подшипники (см. прил. 2):

- На ведущем валу №307 (d_{Π} = 35 мм, D_2 = 80 мм, C = 33,2 кH, C_0 = 18,0 кH);
- На ведомом валу №308 ($d_{\Pi} = 40$ мм, $D_2 = 90$ мм, C = 41,0 кH, $C_0 = 22,4$ кH).

Измерениями находим $l_1 = l_2 = 57,1$ мм; $l'_1 = l'_2 = 58,1$ мм.

Выбираем под подшипник глубину гнезда $l_{\rm r1}=1,5{\rm B}=1,5\cdot21=31,5$ мм; $l_{\rm r2}=1,5{\rm B}=1,5\cdot22,4=33,6$ мм, где B — ширина подшипника (см. прил. 2).

Ширина мазеудерживающих колец Y = 10 мм.

По диаметру $d_0 = 14$ мм (см. рис. 12) отверстия фланца крышки подшипника принимаем толщину фланца крышки $\Delta = d_0 = 14$ мм.

Высоту головки болта примем равной $0.7d_0 = 0.7 \cdot 14 = 9.8$ мм. Длина пальца l = t + 5, где t = 19.05 — шаг цепи.

$$l = 19,05 + 5 = 24,05 \text{ MM}.$$

Измерением находим расстояние l_3 = 62,6 мм. Окончательно примем l_3 = 64 мм.

7. Проверка долговечности подшипников

Ведущий вал (рис. 34). Момент и угловая скорость быстроходного вала — соответственно T_1 (H·мм) и ω_1 (c⁻¹), делительный диаметр шестерни $d_1 = 40,6$ мм, силы в зацеплении: окружная $F_t = 1077$ H; радиальная: $F_r = 398$ H; осевая $F_a = 193$ H; диаметр вала шестерни под подшипник $d_1 = 20$ мм.

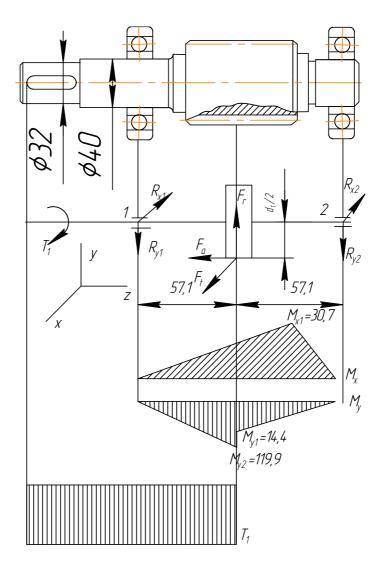


Рис. 34. Расчетная схема ведущего вала (эпюры построены на сжатом волокне).

Реакции опор: В плоскости *XZ*:

$$R_{x1} = R_{x2} = \frac{F_t}{2} = \frac{1077}{2} = 538,5 \text{ H},$$

Проверка: $R_{x1} + R_{x2} - F_r = 0$; 538,5 + 538,5 - 1077 = 0

В плоскости ҮХ:

$$\sum M_1 = 0 - R_{y2}(l_1 + l_2) + F_r l_1 - F_a d_1/2 = 0;$$

$$\sum M_2 = 0$$
 $R_{y1}(l_1 + l_2) - F_r l_2 - F_a d_1/2 = 0.$

Из системы уравнений моментов:

$$R_{y1} = \frac{F_r l_2 + F_a \frac{d_1}{2}}{l_1 + l_2} = \frac{398 \cdot 57, 1 + 193 \frac{63,5}{2}}{57, 1 + 57, 1} = 252,7 \text{ H},$$

$$R_{y2} = \frac{F_r l_2 - F_a \frac{d_1}{2}}{l_1 + l_2} = \frac{398 \cdot 57, 1 - 193 \frac{63,5}{2}}{57, 1 + 57, 1} = 145,3 \text{ H}.$$

Проверка: $R_{y2} + R_{y1} - F_r = 0$; 145,3 + 252,7 - 398 = 0

Суммарные реакции (8.1), Н:

$$P_{r2} = \sqrt{R_{x2}^2 + R_{y2}^2} = \sqrt{538.5^2 + 145.3^2} = 558 \text{ H};$$

$$P_{r1} = \sqrt{R_{x1}^2 + R_{y1}^2} = \sqrt{538,5^2 + 252,7^2} = 595 \text{ H}.$$

Определим изгибающие моменты в сечении А-А:

$$M_x = R_{x1} \cdot l_1 = 538.5 \cdot 0.0571 = 30.7 \text{ H} \cdot \text{M};$$

$$M_{y1} = R_{y1} \cdot l_1 = 252,7 \cdot 0,0571 = 14,4 \text{ H}\cdot\text{M};$$

$$M_{y2} = R_{y1} \cdot l_1 + F_a \frac{d_1}{2} = 252,7 \cdot 0,0571 + \frac{193}{2} = 111,9 \text{ H} \cdot \text{M}$$

Построение эпюр изгибающих моментов показано на рис. 34.

Подбираем подшипники по более нагруженной опоре 1.

Проверим ранее выбранный подшипник № 307 d_1 = 35мм, D_1 = 80мм, B = 21 мм, C = 33,2 кH, C_0 = 18,0 кH.

Эквивалентная нагрузка для подшипников (9.3; 9.4):

$$\frac{F_a}{C_0} = \frac{193}{18000} = 0.01.$$

Этой величине соответствует e = 0.19 (см. табл. 44).

$$\frac{F_a}{VF_r} = \frac{193}{1 \cdot 398} = 0.48 \ge e = 0.19 ,$$

следовательно

$$P_{a} = (XVP_{rx} + YF_{a})K_{b}K_{T} = (0.56 \cdot 1.595 + 2.3.193)1.3.1.0 = 1010.2 \text{ H},$$

где X = 0.56; $K_6 = 1.3$; V = 1; Y = 2.3; $K_T = 1.0$ (см. п. 8.4). Долговечность подшипника (9.5), ч:

$$L_h = \frac{10^6}{60n_1} \cdot \left(\frac{C}{P_{\text{amax}}}\right)^3, \quad L_h = \frac{10^6}{60 \cdot 950} \cdot \left(\frac{33200}{1060,7}\right)^3 = 0.5 \cdot 10^6 \,\text{Y},$$

где $P_{\text{3 мах}}$ — максимальная эквивалентная нагрузка; n_1 — частота вращения кольца подшипника, C — динамическая грузоподъемность, H.

Подшипники с учетом долговечности выбраны правильно, т.к. срок службы редуктора составляет 12000ч (из задания).

Ведомый вал (рис. 35). К действующим нагрузкам добавляется нагрузка от цепной передачи $F_3 = 3061$ Н. Угол наклона цепной передачи к горизонту у принимаем равным 45°. Составляющие этой нагрузки: $F_{3x} = F_3 \cos \gamma$; $F_{3y} = F_3 \sin \gamma$; т.к $\gamma = 45^\circ$, то $F_{3x} = F_{3y} = F_3 \sin \gamma = 3061 \sin 45^\circ = 2164$ Н.

Из первого этапа компоновки $l_1 = l_2 = 58,1$ мм, $l_3 = 64,0$ мм Реакции опор:

в плоскости XOZ:

$$R_{x4} = \frac{1}{l_1 + l_2} [F_t l_1 + F_{3x} (l_3 + l_2 + l_1)] =$$

$$= \frac{1}{58,1 + 58,1} [1077 \cdot 58,1 + 2164(64 + 58,1 + 58,1)] = 3894 \text{ H}.$$

$$R_{x3} = \frac{1}{l_1 + l_2} (F_t l_2 - F_{3x} \cdot l_3) = \frac{1}{58, 1 + 58, 1} (1077 \cdot 58, 1 - 2164 \cdot 64) = -653 \text{ H}$$

Знак «—» говорит о том что реакция направлена в противоположную сторону.

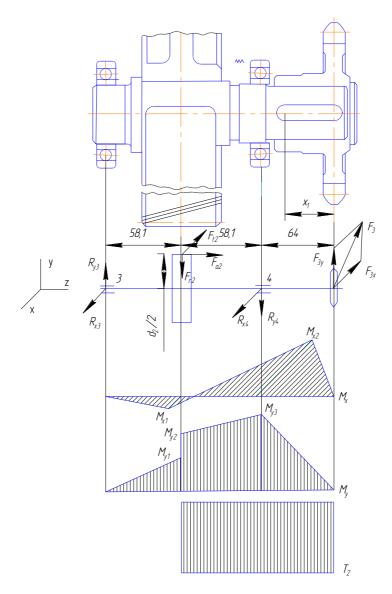


Рис. 35. Расчетная схема ведущего вала (эпюры построены на сжатом волокне).

Проверка:

$$[R_{x3} + R_{x4} - (F_t + F_{3x})] = 0; [(3894 - 653) - (1077 + 2164)] = 0;$$

• в плоскости *YOZ*:

$$R_{y3} = \frac{1}{2l_1} \left(F_r l_2 - F_a \frac{d_2}{2} + F_{3y} l_3 \right) =$$

$$= \frac{1}{2 \cdot 58,1} \left(398 \cdot 58,1 - 193 \frac{256,5}{2} + 2164 \cdot 64 \right) = 1178 \text{ H}$$

$$R_{y4} = \frac{1}{2l_2} \left(-F_r l_2 - F_a \frac{d_2}{2} + F_{3y} (2l_2 + l_3) \right) = \frac{1}{2 \cdot 58,1} \left(-398 \cdot 58,1 - 193 \frac{256,5}{2} + 2164 (2 \cdot 58,1 + 64) \right) = 2944 \text{ H}.$$

Проверка: $R_{y4} + F_r - (F_{3y} + R_{y3}) = 2944 + 398 - (2164 + 1178) = 0$. Суммарные реакции (9.1), H:

$$P_{r2} = \sqrt{R_{x4}^2 + R_{y4}^2} = \sqrt{3894^2 + 2944^2} = 4882 \text{ H};$$

$$P_{r1} = \sqrt{R_{x3}^2 + R_{y3}^2} = \sqrt{653^2 + 1178^2} = 1347 \text{ H}.$$

Построение эпюр изгибающих моментов показано на рис. 35.

Подбираем подшипники по более нагруженной опоре 2.

Намечаем подшипник № 308 $d_2 = 40$ мм, $D_2 = 90$ мм, B = 23 мм, C = 41,0 кН, $C_0 = 22,4$ кН.

Эквивалентная нагрузка для подшипников (9.3, 9.4):

$$\frac{F_a}{C_0} = \frac{193}{22400} = 0,009$$
.

Этой величине соответствует e = 0,19 (см. табл. 45).

$$\frac{F_a}{VF_r} = \frac{193}{1 \cdot 229.6} = 0.8 \ge e = 0.19,$$

следовательно

$$P_{a} = (XVP_{rr} + YF_{a})K_{6}K_{T} = (0.56 \cdot 1.4882 + 2.3.193)1.3.1.0 = 4131.2 \text{ H},$$

где
$$X = 0.56$$
; $K_6 = 1.3$; $V = 1$; $Y = 2.3$; $K_T = 1.0$ (см. п. 8.4).

Долговечность подшипника, ч (9.5):

$$L_h = \frac{10^6}{60n_2} \cdot \left(\frac{C}{P_{\text{9max}}}\right)^3; \quad L_h = \frac{10^6}{60 \cdot 237,5} \cdot \left(\frac{41000}{4131,2}\right)^3 = 68,6 \cdot 10^3 \,\text{y}$$

где $P_{\text{3 мах}}$ — максимальная эквивалентная нагрузка; n_2 — частота вращения кольца подшипника, C — динамическая грузоподъемность, H.

Подшипники на долговечность выбраны правильно, т.к. срок службы редуктора составляет 12000ч (из задания).

8. Второй этап компоновки цилиндрического одноступенчатого редуктора.

На втором этапе компоновки конструктивно оформляются зубчатые колеса, валы, корпус, подшипниковые узлы и определяют данные необходимые для проверки прочности валов.

Второй этап компоновки выполняется в последовательности, указанной в разд. 10 методики расчета.

9. Подбор шпонок по прочности шпоночных соединений.

Материал шпонок – сталь 45, термообработка – нормализация.

Ведущий вал d = 32 мм (шпоночное соединение вала с муфтой).

По табл. 47 выбираем шпонку сечением $b \times h = 10 \times 8$ мм, $t_1 = 5,0$ мм, длина шпонки l = 70 мм, т.к. длина полумуфты МУВП (табл. 55) для вала диаметром 32 мм составляет 80 мм.

Проверим шпонку по напряжению смятия (11.1):

$$\sigma_{\scriptscriptstyle CM} = \frac{2T}{d_1 l_p (h - t_1)} \leq [\sigma_{\scriptscriptstyle CM}],$$

где $d_1 = 32$ мм; h = 8 мм; $t_1 = 5,0$ мм; $l_p = 70 - 10 = 60$ мм; T = 34,19 Н·мм; $[\sigma_{\text{см}}] = 60$ МПа (материал полумуфт – чугун):

$$\sigma_{cM} = \frac{2 \cdot 34,19 \cdot 10^3}{32 \cdot 60 \cdot (8 - 5)} = 11,87 \le 60$$

Ведомый вал d=36 мм (шпоночное соединение вала с ведущей звездочкой цепной передачи).

По таблице 47 выбираем шпонку сечением $b \times h = 10 \times 8$ мм, $t_1 = 5,0$ мм, длина шпонки l = 55 мм, т.к. длина ступицы звездочки $l_c = 64$ мм.

Проверим шпонку по напряжению смятия (11.1):

$$\sigma_{cm} = \frac{2 \cdot 132, 8 \cdot 10^3}{36 \cdot 45 \cdot (8 - 5)} = 54, 6 \le 100,$$

где $d_1=36$ мм; h=8 мм; $t_1=5,0$ мм; $l_{\rm p}=55-10=45$ мм; T=132,8 Н мм;

 $[\sigma_{cm}] = 100 \text{ M}\Pi a$:

Условие $\sigma_{c_{M}} \leq [\sigma_{c_{M}}]$ – выполнено.

Ведомый вал $d=45\,$ мм (шпоночное соединение вала с зубчатым колесом).

По таблице 47 выбираем шпонку сечением $b \times h = 14 \times 9$ мм, $t_1 = 5,5$ мм, длина шпонки l = 40 мм, т.к. ширина венца зубчатого колеса $b_2 = 50,4$ мм.

Проверим шпонку по напряжению смятия (11.1):

$$\sigma_{cM} = \frac{2 \cdot 132,8 \cdot 10^3}{45 \cdot 30 \cdot (9 - 5,5)} = 56,2 \le 100,$$

где $d_1 = 45$ мм; h = 9 мм; $t_1 = 5,5$ мм; $l_{\rm p} = 40 - 10 = 30$ мм; T = 132,8 Н мм;

 $[\sigma_{cm}] = 100 \text{ M}\Pi a$:

 $\bar{y}_{cловие} \ \sigma_{cm} \leq [\sigma_{cm}] - выполнено.$

10. Уточненный расчет валов

Ведущий вал (см. рис. 34). Материал шестерни и колеса – сталь 40, термообработка – улучшение. Шестерня выполнена заодно с валом.

По табл. 22 (диаметр заготовки < 90 мм) значение $\sigma_{\scriptscriptstyle B}$ = 780 МПа.

Предел выносливости при симметричном цикле изгиба:

$$\sigma_{-1} = 0.43 \sigma_{\scriptscriptstyle B} = 0.43.780 = 335 \text{ M}\Pi a.$$

Предел выносливости при симметричном цикле касательных напряжений (12.1):

$$\tau_{-1} \approx 0.58 \sigma_{-1} = 0.58 \cdot 335 = 193 \text{ M}\Pi a.$$

Рассмотрим сечение быстроходного вала, в котором концентратором напряжений является шпоночная канавка, и возникают касательные напряжения (рис. 34) (12.2):

$$s = s_{\tau} = \frac{\tau_{-1}}{\frac{k_{\tau}}{\varepsilon_{\tau}} \tau_{\upsilon} + \psi_{\tau} \tau_{m}},$$

где $au_{\scriptscriptstyle U} = au_{\scriptscriptstyle m} = rac{ au_{\scriptscriptstyle \max}}{2} = rac{T_1}{2W_{\scriptscriptstyle K}}$ при $d_{\scriptscriptstyle B} = 32$ мм; b = 10 мм; t = 5 мм (см. табл. 50).

$$W_{\kappa} = \frac{\pi d^3}{16} - \frac{bt(d-t)^2}{2d} = \frac{3,14 \cdot 32^3}{16} - \frac{10 \cdot 5(32-5)^2}{2 \cdot 32} = 5880 \text{ mm}^3;$$

$$\tau_{_{\mathcal{O}}} = \tau_{_{m}} = \frac{34190}{2 \cdot 5880} = 3 \text{ M}\Pi \text{a}.$$

Принимаем k_{τ} = 1,75 (см. табл. 47), ϵ_{τ} = 0,77 (см. табл. 48), ψ_{τ} = 0,1. Таким образом:

$$s = s_{\tau} = \frac{193}{\frac{1,75}{0,77} \cdot 3 + 0,1 \cdot 3} = 27,1.$$

Коэффициент запаса прочности по нормальным напряжениям:

$$S_{\sigma} = \frac{\sigma_{-1}}{\frac{k_{\sigma}}{\varepsilon_{\sigma}}\sigma_{\upsilon} + \psi_{\sigma}\sigma_{m}} = \frac{335}{\frac{1,7}{0,88} \cdot 19,7 + 0,2 \cdot 7,7} = 8,5,$$

где

$$\sigma_{v} = \sigma_{u} = M/W = 116,0.10^{3}/5880 = 19,7.$$

$$\sigma_m = \frac{4F_a}{\pi d^2} = \frac{4 \cdot 193}{3,14 \cdot 32} = 7,7$$

Суммарный изгибающий момент в сечении:

$$M=\sqrt{M_x^2+M_y^2}$$
; $M=\sqrt{30,7^2+111,9^2}=116,0\cdot 10^3$ H·мм; $M_y=30,7\cdot 10^3$ H·мм; $M_y=111,9$ H·мм (с эпюры).

Результирующий коэффициент запаса прочности (12.6):

$$s = \frac{s_{\sigma} s_{\tau}}{\sqrt{s_{\sigma}^2 + s_{\tau}^2}} = \frac{27,1 \cdot 8,5}{\sqrt{27,1^2 + 8,5^2}} = 8,1 \ge [s] = 1,6...2,1.$$

Ведомый вал (рис. 35). Проверяем сечение I–I, в котором концентратором напряжений является шпоночное соединение вала с зубчатым колесом.

По табл. 22 (диаметр заготовки < 90 мм) значение $\sigma_{\scriptscriptstyle B}$ = 780 МПа. Предел выносливости при симметричном цикле изгиба:

$$\sigma_{-1} = 0.43 \sigma_{\text{B}} = 0.43.780 = 335 \text{ M}\Pi a.$$

Предел выносливости при симметричном цикле касательных напряжений (12.1):

$$\tau_{-1} \approx 0.58 \sigma_{-1} = 0.58 \cdot 335 = 193 \text{ M}\Pi a.$$

<u>Сечение «шпоночный паз выходного конца вала»</u>. Концентратор напряжений — в сечении «шпоночное соединение». Суммарный изгибающий момент в этом сечении:

$$M_{\Sigma} = \sqrt{M_x^2 + M_y^2};$$

$$M_x = R_{x3}l_2 = 653 \cdot 58, 1 = 37, 9 \cdot 10^3 \text{ H·mm};$$

$$M_y = R_{y3}l_2 + F_a \frac{d_2}{2} = 2944 \cdot 58, 1 + 193 \cdot \frac{256, 5}{2} = 196 \cdot 10^3 \text{ H·mm};$$

$$M_{\Sigma} = \sqrt{(37, 9 \cdot 10^3)^2 + (196 \cdot 10^3)^2} = 200 \cdot 10^3 \text{ H·mm}.$$

Момент сопротивления кручению:

$$W_K = \frac{\pi d^3}{16} - \frac{bt(d-t)^2}{2d} = \frac{3,14 \cdot 32^3}{16} - \frac{10 \cdot 5(32-5)^2}{2 \cdot 32} = 5860 \text{ H} \cdot \text{MM}^3$$

где d = 32 мм, t = 5 мм, b = 10 мм.

Момент сопротивлений изгибу:

$$W = \frac{\pi d^3}{32} - \frac{bt(d-t)^2}{2d} = \frac{3,14 \cdot 32^3}{32} - \frac{10 \cdot 5(32-5)^2}{2 \cdot 32} = 2646 \text{ H} \cdot \text{MM}^3.$$

Амплитуда и среднее напряжение цикла касательных напряжений:

$$\tau_{_D} = \tau_{_m} = \frac{T_{_2}}{2W_{_K}} = \frac{122,33 \cdot 10^3}{2 \cdot 5860} = 10,4 \text{ M}\Pi a.$$

Амплитуда нормальных напряжений изгиба:

$$\sigma_v = \frac{M_{\Sigma}}{W} = \frac{200 \cdot 10^3}{2646} = 75,6 \text{ M}\Pi a.$$

Коэффициенты запаса прочности по нормальным и по касательным напряжениям:

$$S_{\sigma} = \frac{\sigma_{-1}}{\frac{k_{\sigma}}{\varepsilon_{\sigma}} \sigma_{\upsilon} + \psi_{\sigma} \sigma_{m}} = \frac{335}{2,6 \cdot 75,6 + 0,2 \cdot 7,7} = 1,7,$$

$$S_{\tau} = \frac{\tau_{-1}}{\frac{k_{\tau}}{\varepsilon_{\tau}} \tau_{\upsilon} + \psi_{\tau} \tau_{m}} = \frac{193}{1,96 \cdot 10,4 + 0,1 \cdot 10,4} = 10,9,$$

$$\frac{\kappa_{\sigma}}{\varepsilon_{\sigma}} = 2,6$$
 и $\frac{\kappa_{\tau}}{\varepsilon_{\tau}} = 0,6 \cdot 2,6 + 0,4 = 1,96$, $\psi_{\sigma} = 0,2$, $\psi_{\tau} = 0,1$;
$$\sigma_{m} = \frac{4F_{a}}{\pi d^{2}} = \frac{4 \cdot 193}{3,14 \cdot 32} = 7,7$$

Результирующий коэффициент запаса прочности:

$$s = \frac{s_{\sigma} s_{\tau}}{\sqrt{s_{\sigma}^2 + s_{\tau}^2}} = \frac{1,7 \cdot 10,9}{\sqrt{1,7^2 + 10,9^2}} = 1,7.$$

<u>Сечение «сечение вала под подшипник».</u> Концентратором напряжений является посадка подшипника с гарантированным натягом.

$$\frac{\kappa_{\sigma}}{\varepsilon_{\sigma}}$$
 = 2,6 и $\frac{\kappa_{\tau}}{\varepsilon_{\tau}}$ = 0,6 · 2,6 + 0,4 = 1,96, ψ_{σ} = 0,2, ψ_{τ} = 0,1.

Изгибающий момент:

$$M_4 = F_3 \cdot l_3 = 196 \cdot 10^3 \text{ H} \cdot \text{MM}.$$

Осевой момент сопротивления:

$$W = \frac{\pi d^3}{32} = \frac{3,14 \cdot 40^3}{32} = 6300 \text{ mm}^3.$$

Амплитуда нормальных напряжений:

$$\sigma_{v} = \frac{M_4}{W} = \frac{196000}{6300} = 31 \text{ M}\Pi \text{a}.$$

Полярный момент сопротивления:

$$W_P = 2W = 2.6300 = 12,6.10^3 \text{ mm}^3$$
.

Амплитуда касательных напряжений:

$$\tau_{\rm p} = T_2/2W_{\rm p} = 122330/2 \cdot 12600 = 4.8 \text{ M}\Pi a$$

Коэффициенты запаса прочности по нормальным и по касательным напряжениям:

$$S_{\sigma} = \frac{\sigma_{-1}}{\frac{k_{\sigma}}{\varepsilon_{\sigma}}\sigma_{\upsilon} + \psi_{\sigma}\sigma_{m}} = \frac{335}{2,6 \cdot 31 + 0,2 \cdot 6,1} = 4,1.$$

$$\sigma_m = \frac{4F_a}{\pi d^2} = \frac{4 \cdot 193}{3,14 \cdot 40} = 6,1$$

$$S_{\tau} = \frac{\tau_{-1}}{\frac{k_{\sigma}}{\varepsilon_{\sigma}} \tau_{\upsilon} + \psi_{\sigma} \tau_{m}} = \frac{142}{1,96 \cdot 4,8 + 0,1 \cdot 4,8} = 14,4.$$

$$\tau_{v} = \tau_{m} = \frac{122,33 \cdot 10^{3}}{2 \cdot 12600} = 4,8.$$

Результирующий коэффициент запаса прочности:

$$s = \frac{s_{\sigma}s_{\tau}}{\sqrt{s_{\sigma}^2 + s_{\tau}^2}} = \frac{4.1 \cdot 14.4}{\sqrt{4.1^2 + 14.4^2}} = 3.9.$$

11. Выбор сорта масла

Смазывание зубчатого зацепления производится окунанием зубчатого колеса в масло, которое залито в редуктор на 10 мм.

Определим объем масляной ванны V = 0.6.4 = 2.4 л.

По табл. 52 выбираем вязкость масла (при σ_H = 244МПа, υ = 0,79 м/c) – 34 ·10⁻⁶м²/c.

По табл. 53 выбираем масло индустриальное И-40А.

12. Подбор муфты

По табл. 55 по диаметру вала d = 32 мм выбираем муфту -250-32-1- У3, ГОСТ 21424-93.

Расчетный момент муфты:

$$T_{\text{pacy}} = K \cdot T_1 = 1,5 \cdot 34,19 = 51,3 \text{ H} \cdot \text{M}^3,$$

где K = 1.5; $T_1 = 34.19 \text{ H} \cdot \text{м}^3$.

Диаметр вала, непосредственно соединенного с муфтой, $-d_1 = 32$ мм, крутящий момент передаваемый муфтой $T_{\text{расч}} = 51,3$ Н·м.

Проверочный расчет муфты МУВП по давлению пальца на втулку (17.2):

$$p = \frac{2T_{pacu}}{zD_0 d_n l} = \frac{2 \cdot 51, 3 \cdot 10^3}{6 \cdot 100 \cdot 14 \cdot 80} = 0, 2 \le [p],$$

где согласно табл. 55: l=80мм; z=6; $D_0=100$ мм; $d_{\Pi}=14$ мм, [p]-допускаемое давление для резиновых втулок [p]=2 МПа.

Проверочный расчет пальцев на изгиб (17.3):

$$\sigma_u = \frac{T_p l_n}{0.1 d_n^3 z} = \frac{51.3 \cdot 10^3}{0.1 \cdot 14^3 \cdot 6} = 31.2 \le [\sigma_u],$$

где $[\sigma_{\rm u}]$ – допускаемое напряжение изгиба, $[\sigma_{\rm u}]$ =60...80МПа; $l_{\rm n}$ – длина пальцев.

Расчет червячного одноступенчатого редуктора и ременной передачи

1. Исходные данные

Кинематическая схема привода рис. 36.

Потребляемая мощность P = 8 кBT;

Угловая скорость на выходном валу $\omega = 2,51$ рад/с.

Срок службы редуктора 1200 ч.

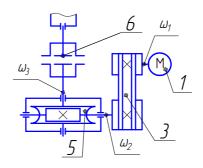


Рис. 36. Кинематическая схема привода: 1 — электродвигатель; 2 — клиноременная передача, 3 — червячный редуктор; 4 — муфта

2. Кинематический и силовой расчет привода

Определяем общий КПД привода с учетом потерь в подшипниках (2.1):

$$\eta = \eta_3 \cdot \eta_5 \cdot \eta_7 \cdot \eta_8 \cdot \eta_8 \cdot \eta_8 = 0.8 \cdot 0.96 \cdot 1.0 \cdot 0.99 \cdot 0.99 \cdot 0.99 = 0.75$$

где η_3 , η_7 , η_5 , η_8 — соответственно КПД червячной передачи, клиноременной передачи, муфты и подшипников качения (см. табл. 1).

Необходимая мощность электродвигателя:

$$P_1 = P_3/\eta = 8/0,75 = 10,7 \text{ kBt.}$$

Выбираем по табл. 2 асинхронный электродвигатель общего назначения с синхронной частотой вращения 1500 мин⁻¹ 4A132M4V3 (P_1 = 11 кВт, n_3 = 1460мин⁻¹).

Общее передаточное число привода (2.3):

$$i = \omega_1/\omega_3 = 152,8/2,51 = 60,8.$$

Согласно (2.4):

$$\omega_1 = \pi n_3/30 = 3,14.1460/30 = 152,8 \text{ рад/с}.$$

По табл. 3 с учетом стандартного ряда передаточных чисел по ГОСТ 2185-66 выбираем передаточное отношение для червячного одноступенчатого редуктора $i_2 = 25$. Тогда передаточное отношение клиноременной передачи:

$$i_1 = i / i_2 = 60,8/25 = 2,43,$$

что соответствует интервалу передаточных чисел для цепной передачи (см. табл. 2.3).

Находим угловые скорости, частоты вращения, мощности и моменты на валах привода.

Крутящий момент на валу электродвигателя:

$$T_1 = P_1/\omega_1 = 11000/152,8 = 72 \text{ H} \cdot \text{M}.$$

Ведущий валу редуктора:

• частота вращения:

$$n_2 = n_3/i_1 = 1460/2, 4 = 608,33 \text{ мин}^{-1};$$

• угловая скорость:

$$\omega_2 = \omega_1/i_1 = 152,8/2,4=63,7$$
 рад/с;

• мощность:

$$P_2 = P_1 \eta_5 = 11.0,96 = 10,56 \text{ kBT};$$

• крутящий момент:

$$T_2 = P_2/\omega_2 = 10560/63,7 = 165,7 \text{ H} \cdot \text{M}.$$

Выходной вал редуктора:

• частота вращения:

$$n_3 = n_2/i_2 = 608,33/25 = 24,33 \text{ MuH}^{-1};$$

• угловая скорость:

$$\omega_3 = \omega_2/i_2 = 63,7/25 = 2,55$$
 рад/с;

• мощность:

$$P_3 = P_2 \eta_3 = 10,56.0,8 = 8,5 \text{ kBT};$$

• крутящий момент:

$$T_3 = P_3/\omega_3 = 8500/2,55 = 3333,3 \text{ H} \cdot \text{M}.$$

3. Расчет клиноременной передачи

Исходные данные (рис. 36):

- мощность и крутящий момент на ведущем валу клиноременной передачи $P_1 = 11$ кВт; $T_1 = 72$ Н·м;
 - угловая скорость на ведущем валу $\omega_1 = 152.8 \text{ c}^{-1}$;
 - передаточное отношение $i_1 = 2,4$.

По номограмме (см. рис. 3) определяем тип ремня Б (с учетом мощности на крутящем валу $P_1 = 11$ кВт и частоты вращения $n_9 = 1460$ мин⁻¹).

Диаметр ведущего (меньшего) шкива (3.16):

$$d_1 = 38...42\sqrt[3]{T_1} = 38...42\sqrt[3]{72} = 158,1...174,7$$
.

Окончательно выбираем $d_1 = 180$ мм.

Окружная скорость ремня (3.17), м/с:

$$v = \omega_1 \cdot d_1 / 2 \cdot 10^3 = 152, 8 \cdot 180 / 2 \cdot 10^3 = 13,75 < [v],$$

где $[\upsilon] = 20$ м/с (см. табл. 11).

Диаметр ведомого шкива (3.18):

$$d_2 = i_1 d_1 (1 - \varepsilon) = 2,4 \cdot 180 \cdot (1 - 0,01) = 427,7 \text{ MM},$$

где $\varepsilon = 0.01$.

Межосевое расстояние находится в диапазоне от a_{\min} до a_{\max} (3.19):

$$a_{\min} = 0.55(d_1 + d_2) + T_0 = 0.55(180 + 427.7) + 10.5 = 344.7 \text{ mm};$$

$$a_{\max} = d_1 + d_2 = 180 + 427.7 = 607.7 \text{ mm},$$

где T_0 – высота клинового ремня (см. табл. 13).

Выбираем a = 400 мм.

Расчетная длина ремня, мм (3.20):

$$L = 2a + 0.5\pi (d_1 + d_2) + \frac{(d_2 - d_1)^2}{4a} =$$

$$= 2 \cdot 400 + 0.5 \cdot 3.14 (180 + 427.7) + \frac{(427.7 - 180)^2}{4 \cdot 400} = 1792.4 \text{ mm}.$$

Из стандартного ряда длин выбираем L = 1800 мм. Уточняем межосевое расстояние, мм (3.21):

$$a = \frac{2L - \pi(d_2 + d_1) + \sqrt{\left[2L - \pi(d_2 + d_1)\right]^2 - 8(d_2 - d_1)^2}}{8} =$$

$$= \frac{2 \cdot 1800 - 3,14(180 + 427,7)}{8} +$$

$$+ \frac{\sqrt{\left[2 \cdot 1800 - 3,14(427,7 + 180)\right]^2 - 8(427,7 - 180)^2}}{8} = 454 \text{ mm}.$$

Частота пробега ремня c^{-1} (3.22):

$$v = \frac{\upsilon \cdot 10^3}{L} = \frac{13,75 \cdot 10^3}{1800} = 7,6;$$

 $v < [v] = 10...20 \text{ c}^{-1} - \text{условие выполнено}.$

Угол обхвата меньшего шкива ремнем (3.23):

$$\alpha_1 = 180^0 - \frac{57^0 (d_2 - d_1)}{a} = 180^0 - \frac{57^0 (427, 7 - 180)}{454} = 148,9^\circ.$$

Число ремней, необходимое для передачи заданной мощности (3.24):

$$z = \frac{PC_p}{P_0C_LC_{\alpha}C_z} = \frac{11 \cdot 1,0}{4,85 \cdot 0,95 \cdot 0,92 \cdot 0,95} = 2,7,$$

где P — мощность на ведущем валу клиноременной передачи; P_0 = 4,85 кВт, (см. табл. 12); C_L = 0,95 (см. табл. 14); C_p = 1,0 (табл. 8); C_α = 0,92 (см. табл. 7); C_z = 0,95 (формула (3.33)).

Выбираем z = 3.

Сила предварительного натяжения ремня (3.25):

$$F_0 = z \cdot A \sigma_0 = 3.138.1,5 = 635 \text{ H},$$

где $\sigma_0 = 1,2...1,5$ МПа — начальное напряжение в ремне; A = 138 мм² (см. табл. 13); z — число ремней.

Сила, действующая на вал, Н (3.26):

$$Q = 2F_0 \cdot \sin(\alpha/2) = 2.635 \cdot \sin(145.6/2) = 1213 \text{ H}.$$

Выбор и расчет конструктивных элементов шкивов

Материал шкивов – чугун СЧ 15-32.

Расчет конструктивных элементов шкивов приведен в табл. 59. Характерные размеры шкивов взяты из табл. 9.

Таблица 59

Расчет клиноременных шкивов

Параметры (рис. 4)	Расчетная формула или указания к выбору размера	
	ведущего шкива	ведомого шкива
Диаметр	$d_1 = 180 \text{ MM}$	$d_2 = 427,7 \text{ MM}$
Размеры профиля канавок, мм р R e e0	20 12,5 16 5	20 12,5 16 5
Диаметр, мм наружные $d_{\rm a}$ внутренние $d_{\rm f}$ Ширина шкивов B , мм	$d_a = 180 + 2.16 = 212$ $d_f = 180 - 2.16 = 148$ $B = (3 - 1)20 = 40$	$d_a = 427,7 + 2.16 = 459,7$ $d_f = 427,7 - 2.16 = 395,7$ $B = (3 - 1)20 = 40$

4. Расчет закрытой червячной передачи.

Исходные данные:

- мощность на валу червяка $P_2 = 10,56$ кВт;
- вращающийся момент на валу червячного колеса $T_3 = 3333,3$ Нм;
- угловая скорость на валу червяка $\omega_2 = 63.7$ рад/с;
- угловая скорость на валу червячного колеса $\omega_3 = 2,55$ рад/с;
- передаточное отношение $i_2 = 25$

Скорость скольжения, м/с:

$$\upsilon_{c\kappa} \approx 4.3\omega_3 i \sqrt[3]{T_3} / 10^3 = 4.3 \cdot 2.55 \cdot 25 \sqrt[3]{3333.3} / 10^3 = 4.1 \text{ m/c}$$

По табл. 32 при скорости скольжения $\upsilon_{c\kappa} > 4$ м/с венец червячного колеса изготавливаем из бронзы Бр.ОФ10-1, при условии, что твердость червяка $HRC \ge 45$.

Коэффициент долговечности при расчете на контактную прочность (5.1):

$$K_{HL} = 8\sqrt{\frac{N_0}{N_{\Sigma}}}$$

где N_0 — базовое число циклов напряжения, N_0 = 10^7 ; N_Σ - число циклов напряжения за весь срок службы передачи. При постоянной нагрузке:

$$N_{\Sigma} = 60i_2t = 60.25.2000 = 30.10^6 < 10^7$$

где t — продолжительность работы нагруженной передачи за установленный срок службы, ч (t = 2000 ч).

Принимаем $N_{\Sigma}=10^{7}$. Тогда:

$$K_{HL} = \sqrt[8]{\frac{10^7}{10^7}} = 1$$

Расчет по контактным напряжениям в червячных передачах проводим по зубьям червячных колес.

$$[\sigma_H] = [\sigma_H]' K_{HL} = 168 \cdot 1 = 168 \text{ M}\Pi a;$$

$$[\sigma_{0F}] = [\sigma_{0F}]' K_{FL} = 71 \cdot 0.75 = 53.3 \text{ M}\Pi a;$$

Значения $K_{\rm FL}$ при бронзовом венце червячного колеса (5.3):

$$K_{FL} = \sqrt[8]{\frac{10^6}{N_{\Sigma}}} = \sqrt[8]{\frac{10^6}{10^7}} = 0.75.$$

 $[\sigma_{0F}]' = 71$ МПа, $[\sigma_{-1F}]' = 51$ МПа (см. табл. 32).

Согласно п.п. 5.5, передаточному отношению i=25 соответствует $z_1=2$. Число зубьев червячного колеса:

$$z_2 = z_1 \cdot i = 2 \cdot 25 = 50 > z_{\min} = 28...26.$$

Межосевое расстояние, мм (5.4):

$$a_{\omega} = \left(\frac{z_{2}}{q} + 1\right)_{3}^{3} \left(\frac{170}{\frac{z_{2}}{q} \left[\sigma_{H}\right]}\right)^{2} T_{3} K_{H\beta} K_{H\nu} =$$

$$= \left(\frac{50}{12,5} + 1\right)_{3}^{3} \left(\frac{170}{\frac{50}{12,5} \cdot 168}\right)^{2} 3333,3 \cdot 10^{3} \cdot 1,1 \cdot 1,1 = 318$$

где $T_3 = 3333,3 \cdot 10^3 \text{ H·мм}; K_{H\beta} = K_{F\beta} = 1,1.$

Из стандартного ряда выбираем $a_{\omega} = 400$ мм. Расчетный модуль передачи, мм (5.5):

$$m = \frac{2a_{\omega}}{z_2 + q} = \frac{2 \cdot 400}{50 + 12,5} = 12,8 \text{ MM}.$$

Выбираем m = 12,5, q = 12,5 (см. табл. 34). Расчет геометрических параметров передачи сведен в табл. 60.

Таблица 60

Геометрические размеры передачи

Параметр	Формула		
Червяк			
Делительный диаметр	$d_1 = qm = 12,5 \cdot 12,5 = 156,25$ MM		
Диаметр вершин витков	$d_{a1} = d_1 + 2h_{a1} = m(q+2) = 12,5(12,5+2) = 181,25 \text{ MM}$		
Диаметр впадин	$d_{f1} = d_1 - 2h_{f1} = m(q - 2.4) = 12.5(12.5 - 2.4) = 126.25 \text{ MM}$		
Длина нарезанной части, при	при $z_1 = 12$ $b_1 = m(11 + 0.06z_2) = 12.5(11 + 0.06.50) = 12.5(11 + 0.06.50)$		
коэффициенте смещения,	= 175 MM		
равном нулю			
Венец червячного колеса			
Делительный диаметр	$d_2 = mz_2 = 625 \text{ MM}$		
Диаметр вершин зубьев	иаметр вершин зубьев $d_{a2} = d_2 + 2h_{a2} = m(z_2 + 2) = 650 \text{ мм}$		
Диаметр впадин	$d_{f2} = d_2 - 2h_{f2} = m(z_2 - 2,4) = 595 \text{ mm}$		
Наибольший диаметр колеса	$d_{a2\text{max}} \le d_{a2} + 6m/(z_1 + 2) = 650 + 6.12,5/52 = 651,44 \text{ MM}$		
Ширина венца червячного	при $z_1 = 12$ $b_2 \le 0.75 d_{a1} = 0.75 \cdot 181,25 = 136$ мм		
колеса			

Уточненное значение межосевого расстояния (5.6):

$$a_{\odot} = (d_1 + d_2)/2 = (156,25 + 625)/2 = 391_{\text{MM}}.$$

Окружная скорость червяка:

$$v_1 = 0.5\omega_2 d_1 = 0.5.63, 7.0, 156 = 4.97 \text{ m/c}.$$

Скорость скольжения:

$$v_{ck} = v_1/\cos \gamma = 4.97/\cos 9^{\circ}05' = 5 \text{ m/c}.$$

Из табл. 37 при $\upsilon_{c\kappa} = 5$ м/с $[\sigma_H] = 165$ МПа.

Уточненное значение КПД передачи (5.7):

$$\eta = (0.95....0.96) \frac{tg\gamma}{tg(\gamma + \varphi')} = (0.95....0.96) \frac{tg9^{\circ}05'}{tg(9^{\circ}05' + 1^{\circ}20')} = 0.84,$$

где $\phi'=1^{\circ}20'$ (см. табл. 38).

Уточненное значение момента на валу колеса (5.8):

$$T_3 = P_2 \eta / \omega_3 = 10,56.0,84/2,55 = 3478 \text{ H} \cdot \text{M}.$$

Расчетное контактное напряжение в зацеплении (5.9):

$$\sigma_{H} = \frac{170}{50/12,5} \sqrt{\frac{(50/12,5+1)^{3}}{391^{3}}} 3478 \cdot 10^{3} \cdot 1,1 \cdot 1,1 =$$

$$= 126 \le [\sigma_{H}] = 175 \text{ M}\Pi \text{a}.$$

Силы, действующие в зацеплении:

• окружная сила на колесе и осевая на червяке:

$$F_{t2} = F_{a1} = \frac{2T_3}{d_2} = \frac{2 \cdot 33333}{0,625} = 10,7 \text{ kH};$$

• окружная сила на червяке и осевая на колесе:

$$F_{t1} = F_{a2} = F_{t2}tg(\gamma + \varphi') = 10.4tg(9^{\circ}05' + 1^{\circ}20') = 1.2 \text{ kH};$$

• радиальная сила:

$$F_{r1} = F_{r2} = F_{t2}tg\alpha = 10.4tg20^{\circ} = 3.8 \text{ kH},$$

где $\alpha = 20^{\circ}$ – угол зацепления.

Эквивалентное число зубьев колеса

$$z_{v2} = z_2/\cos^3 \gamma = 50/\cos^3 9^{\circ}05' = 52,1.$$

Расчетное напряжение изгиба червячного колеса (5.10):

$$\sigma_{F2} = 1.5Y_{F2}K_{F\beta}K_{F\nu}\frac{T_3\cos\gamma}{d_1d_2m} =$$

$$= 1.5 \cdot 2.19 \cdot 1.1 \cdot 1.1\frac{3333.3 \cdot 10^3\cos9^\circ 05'}{156.25 \cdot 625 \cdot 12.5} = 10.7 \text{ M}\Pi\text{a},$$

где Y_F – коэффициент формы зуба колеса (см. табл. 30). Сила, изгибающая червяк:

$$F = \sqrt{F_{t1}^2 + F_{r1}^2} = \sqrt{1,2^2 + 3,8^2} = 3,98 \text{ kH}.$$

5. Предварительный расчет валов и конструктивные размеры корпуса редуктора

Диаметр выходного конца ведущего вала при $T_2 = 165,7$ H·м, (6.1):

$$d_1 \ge \sqrt[3]{\frac{16T_2}{\pi[\tau_k]}} = \sqrt[3]{\frac{16 \cdot 165, 7 \cdot 10^3}{3, 14 \cdot 15}} = 38,325 \,\text{MM},$$

где $[\tau_{\kappa}] = 15...20 \ \mathrm{M\Pi a}$ – допускаемые напряжения на кручение. Диаметр выходного конца ведомого вала.

$$d_2 \ge \sqrt[3]{\frac{16T_3}{\pi[\tau_k]}} = \sqrt[3]{\frac{16 \cdot 3333, 3 \cdot 10^3}{3,14 \cdot 20}} = 94,7 \text{ MM}$$

Полученные результаты округляем до ближайшего большего значения из стандартного ряда: $d_1 = 40$ мм, $d_2 = 95$ мм.

Диаметр вала между выходным концом и посадочным местом под подшипник должен быть $d_{\rm B} < d_{\rm II} < d_3$ и кратным 5. Для червячного вала: $d_{\rm B} = 40$ мм, $d_{\rm II} = 45$ мм; для ведомого вала: $d_{\rm B} = 95$ мм, $d_{\rm II} = 100$ мм, $d_{\rm K2} = 110$ мм (рис. 37), где $d_{\rm B}$ — выходной диаметр вала, мм; $d_{\rm II}$ — посадочный диаметр вала под подшипник, мм; $d_{\rm B}$ — диаметр вала под посадку червячного колеса, мм.

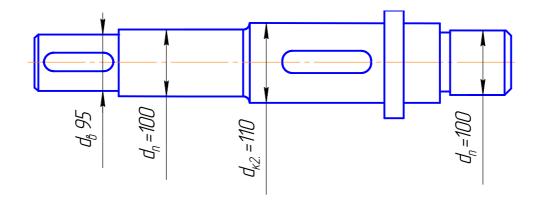


Рис. 37. Вал редуктора

Определение параметров корпуса и крышки редуктора

Расчетное значение толщины стенок корпуса и крышки червячного редуктора (табл. 61) округляем до нормального ряда чисел (не менее 8).

Таблица 61

Расчет параметров крышки и корпуса редуктора

Элементы	Расчет параметров		
корпуса	т асчет параметров		
Толщина			
стенок корпуса	$\delta = 0.04a_{\odot} + 2 = 0.04.400 + 2 = 18 \text{ mm}$		
крышки	$\delta_1 = 0.02a_{\odot} + 2 = 0.02.400 + 2 = 10 \text{ MM}$		
Толщина фланцев:			
верхнего	$b = 1.5\delta = 1.5.18 = 27 \text{ mm}$		
нижнего	$p = 2,35\delta = 2,3.18 = 42,3 \text{ MM}$		

Диаметр болтов (округляется согласно нормальному ряду диаметров резьбы):

• фундаментных:

$$d_1 = 1,25\sqrt[3]{2 \cdot T_3} = 1,25\sqrt[3]{2 \cdot 3346} \approx 24$$
 mm;

• крепящих крышку к корпусу у подшипников:

$$d_2 = (0,7...0,756)d_1 = (0,7...0,756)\cdot 24 = 16,8...18,1 \approx 18$$
mm.

• соединяющих крышку с корпусом:

$$d_3 = (0,5...0,6)d_1 = (0,5...0,6) \cdot 24 = 12...14,4 \approx 12 \text{ MM}.$$

6. Первый этап компоновки червячного редуктора

Первый этап компоновки червячного редуктора подробно описан в методике расчета (см. разд. 8).

Так как в зацеплении червячного колеса и червяка значительные осевые усилия, предварительно выбираем радиально-упорные однорядные подшипники для червяка и роликовые конические для вала червячного колеса (см. прил. 1). Для вала червяка — №46309 ($d_1 = 45$ мм, $D_1 = 100$ мм, B = 25 мм, C = 61,4 кH, $C_0 = 37$ кH). Для вала червячного колеса — №7320 ($d_2 = 100$ мм, $D_2 = 215$ мм, B = 47 мм, C = 380 кH, $C_0 = 290$ кH).

Расстояние между подшипниками на валу червяка: $l_1 \approx d_{\rm a2} = 650$ мм.

Для вала червячного колеса зазор между червячным колесом и корпусом:

$$a = \sqrt[3]{L} + 3 = \sqrt[3]{650 + 181,5} + 3 = 12,4$$
 MM.

Выбираем a = 13 мм.

Зазор между ступицей червячного колеса и подшипниками a=13 мм. Длина ступицы червячного колеса:

$$L_{\text{ct}} = (1, 2...1, 8)d_{\kappa 2} = (1, 2...1, 8) \cdot 110 = 132...198 \text{ MM},$$

где $d_{\kappa 2}$ – посадочный диаметр вала под червячное колесо.

Принимаем $L_{cr} = 160$ мм.

Определим смещение точки приложения реакции (размер a_1) для однорядных радиально-упорных подшипников, мм:

$$a_1 = 0.5 \left[B + \frac{(d+B)}{2} tg\alpha \right] = 0.5 \left[25 + \frac{(45+25)}{2} tg12 \right] = 15.7$$

$$a_2 = 0.5 \left[B + \frac{(d+B)}{2} tg\alpha \right] = 0.5 \left[47 + \frac{(100+47)}{2} tg12 \right] = 31.3$$

где T, B, d, D, $tg \alpha - cm$. прил. 2.

После всех построений путем измерения (рис. 38) находим $l_2 = 226,4$ мм.

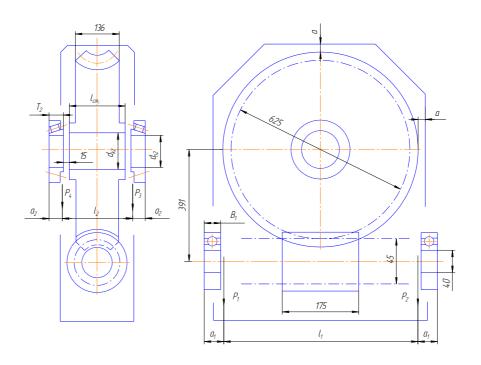


Рис. 38. Компоновка червячного редуктора.

7. Проверка долговечности подшипников

Исходные данные:

- момент быстроходного вала $T_2 = 165, 7 \cdot 10^{-3} \text{ H·мм}$;
- угловая скорость $\omega_2 = 63,7 \text{ c}^{-1}$;
- нагрузка от клиноременной передачи $F_p = 1213 \text{ H}$;
- делительный диаметр червяка d_1 =156,25 мм;
- диаметр вала червяка под подшипник d_{1n} = 45 мм;
- расчетная долговечность подшипника $L_{\rm h}$ = 2000 ч.

Силы в зацеплении:

- окружная $F_{t1} = 1,2$ кH;
- осевая $F_{a1} = 10,4$ кH;
- радиальная $F_{r1} = 3.8$ кН.

К нагрузкам (рис.39), действующим на ведущий вал, добавляется нагрузка от ременной передачи $F_p = 1213$ Н. Составляющие этой нагрузки:

$$F_{py} = F_p \cos \beta = 1213 \cos 40^\circ = 929 \text{ H};$$

$$F_{pz} = F_p \sin \beta = 1213 \sin 40^\circ = 779 \text{ H};$$

где $\beta = 40^{\circ}$ – угол наклона клиноременной передачи.

Из первого этапа компоновки $l_1 = l_2 = 650/2 = 325$ мм; $l_3 = 68$ мм.

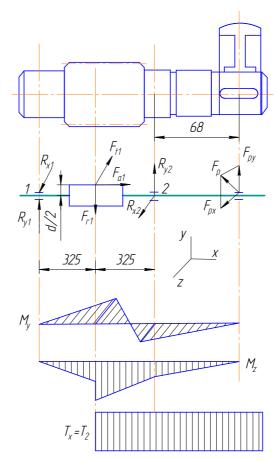


Рис. 39. Расчетная схема вала червяка

Плоскость YZ:

$$\Sigma M_1 = -F_{r1}l_1 - F_{a1}\frac{d_1}{2} + R_{y2}(l_1 + l_2) - F_{py}(l_1 + l_2 + l_3) = 0;$$

$$R_{y2} = \frac{3800 \cdot 325 + 10400 \cdot \frac{156,25}{2} + 929(325 + 325 + 68)}{325 + 325} = 4176,2 \text{ H};$$

$$\Sigma M_2 = -R_{y1}(l_1 + l_2) + F_{r1}l_2 - F_{a1}\frac{d_1}{2} - F_{py}l_3 = 0;$$

$$R_{y1} = \frac{F_{r1}l_2 - F_{a1}\frac{d_1}{2} - F_{py}l_3}{l_1 + l_2}$$

$$R_{y1} = \frac{-10400\frac{156,25}{2} - 929 \cdot 68 + 3800 \cdot 325}{325 + 325} = 552,8 \text{ H}.$$

Проверка: 552,8 + 4176,2 - 929 - 3800 = 0

В плоскости ХХ:

$$\Sigma M_1 = F_{t2}l_1 - R_{z2}(l_1 + l_2) - F_{py}(l_1 + l_2 + l_3) = 0;$$

$$R_{x2} = \frac{1200 \cdot 325 - 779(325 + 325 + 68)}{325 + 325} = -260 \text{ H};$$

$$\Sigma M_2 = R_{x1}(l_1 + l_2) - F_{t1}l_2 - F_{px}l_3 = 0;$$

$$R_{x1} = \frac{1200 \cdot 325 + 779 \cdot 68}{325 + 325} = 682 \text{ H}.$$

Суммарные реакции (9.1; 9.2):

$$P_{r1} = \sqrt{R_{x1}^2 + R_{y1}^2} = \sqrt{682^2 + 552,8^2} = 878 \text{ H};$$

$$P_{r2} = \sqrt{R_{x2}^2 + R_{y2}^2} = \sqrt{260^2 + 4176,2^2} = 4184 \text{ H}.$$

Построение эпюр изгибающих моментов показано на рис. 39.

Проверим на долговечность подшипники на более нагруженной опоре «2».

Ранее выбран подшипник № 46309 ($d_1 = 45$ мм, $D_1 = 100$ мм, B = 25 мм, C = 61,4 кH, $C_0 = 37$ кH).

Эквивалентная нагрузка для подшипников (9.3):

$$\frac{F_a}{C_0} = \frac{10400}{37000} = 0.28$$
.

Этой величине табл. 46 соответствует e = 0.52.

$$\frac{F_a}{VF_r} = \frac{10400}{1 \cdot 3800} = 2,7 > 0,52,$$

следовательно:

$$\begin{split} P_{9} &= (XVP_{r2} + YF_{a})K_{6}K_{T} = \\ &= (0.45 \cdot 1 \cdot 4184 + 1.04 \cdot 10400)1.3 \cdot 1.0 = 16.5 \text{ кH}, \end{split}$$

где
$$X = 0.76$$
; $K_6 = 1.3$; $V = 0.45$; $Y = 1.04$; $K_T = 1.0$ (см. раздел 9, табл. 46)

Долговечность подшипника, в часах (8.5):

$$L_h = \frac{10^6}{60n_2} \cdot \left(\frac{C}{P_{9\,\mathrm{max}}}\right)^3, \qquad L_h = \frac{10^6}{60\cdot 608,33} \cdot \left(\frac{61400}{16500}\right)^3 = 1400$$
 ч.

Подшипники с учетом долговечности выбраны правильно, т.к. срок службы редуктора составляет 1200 ч.

Ведомый вал червячного редуктора (рис.40).

• в плоскости *XZ*:

$$R_{x1} = R_{x2} = \frac{F_t}{2} = \frac{10400}{2} = 5200 \text{ H};$$

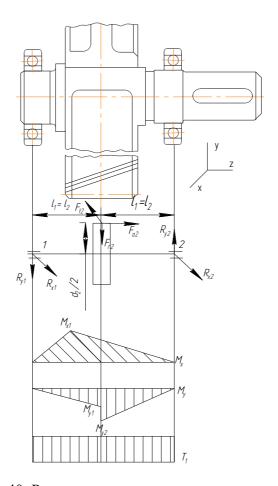


Рис. 40. Расчетная схема вала червячного колеса.

• в плоскости *YZ*:

$$R_{y1} = \frac{1}{2l_2} \left(F_r l_2 + F_a \frac{d_2}{2} \right) =$$

$$= \frac{1}{2 \cdot 226,4} \left(3800 \cdot 226,4 + 1200 \frac{625}{2} \right) = 2728,2 \text{ H};$$

$$R_{y2} = \frac{1}{2l_2} \left(F_r l_2 - F_a \frac{d_2}{2} \right) =$$

$$= \frac{1}{2 \cdot 226,4} \left(3800 \cdot 226,4 - 1200 \frac{625}{2} \right) = 1071,8 \text{ H},$$

где $l_1 = l_2 = 226,4$ мм – из первого этапа компоновки.

Проверка:
$$R_{y2} + R_{y1} - F_r = 0$$
; $2728,2 + 1071,8 - 3800 = 0$

Суммарные реакции, Н:

$$P_{r1} = \sqrt{R_{x1}^2 + R_{y1}^2} = \sqrt{5200^2 + 2728, 2^2} = 5872 \text{ H};$$

 $P_{r2} = \sqrt{R_{x2}^2 + R_{y2}^2} = \sqrt{5200^2 + 1071, 8^2} = 5309 \text{ H}.$

Определим изгибающие моменты в сечении А-А:

$$\begin{split} \boldsymbol{M}_x &= R_{x1} \cdot l_2 = 5200 \cdot 226, 4 = 1177280 \;\; \text{H·мм}; \\ \boldsymbol{M}_{y1} &= R_{y1} \cdot l_2 = 2728, 2 \cdot 226, 4 = 617664 \;\; \text{H·мм}; \\ \boldsymbol{M}_{y2} &= R_{y1} \cdot l_2 + F_a \frac{d_1}{2} = 2728, 2 \cdot 226, 4 + 1200 \frac{650}{2} = 1007664 \;\; \text{H·мм}. \end{split}$$

Построение эпюр изгибающих моментов показано на рис. 40.

Подбираем подшипники по более нагруженной опоре 1.

Ранее выбран подшипник № 7320 ($d_2 = 100$ мм, $D_2 = 215$ мм, B = 47мм, C = 380 кH, $C_0 = 290$ кH).

Эквивалентная нагрузка для подшипников:

$$\frac{F_a}{C_0} = \frac{1200}{290000} = 0,004.$$

Этой величине в табл. 46 соответствует e = 0.30;

$$\frac{F_a}{VF_r} = \frac{1200}{1 \cdot 3800} = 0.32 \ge e = 0.30,$$

следовательно

$$P_9 = (XVP_{r1} + YF_a)K_{\delta}K_T =$$

$$= (0.45 \cdot 1 \cdot 5872 + 1.81 \cdot 1200) \cdot 1.3 \cdot 1.0 = 6.3 \text{ kH},$$

где X = 0,45; $K_6 = 1,3$; V = 1; Y = 1,81; $K_{\rm T} = 1,0$ (см. раздел 9, табл. 46).

Долговечность подшипника, ч.

$$L_h = \frac{10^6}{60n_3} \cdot \left(\frac{C}{P_{9\,\text{max}}}\right)^3, \quad L_h = \frac{10^6}{60 \cdot 24{,}33} \cdot \left(\frac{380000}{6300}\right)^3 = 150 \cdot 10^6\,\text{ч}.$$

Подшипники на долговечность проходят, т.к. срок службы редуктора составляет 1200 ч (из задания).

8. Второй этап компоновки червячного редуктора.

Особенности второго этапа компоновки отражены в п. 10.2 теоретической части.

9. Подбор шпонок по прочности шпоночных соединений.

Подберем и проверим шпонку для соединения ведомого вала и червячного колеса. По таблице 47 (для вала червячного колеса d = 110 мм) выбираем призматическую шпонку 28×16 .

Проверка шпонки по напряжению смятия (11.1):

$$\sigma_{\scriptscriptstyle CM} = \frac{2T}{d_{\scriptscriptstyle K} l_{\scriptscriptstyle p} (h - t_1)} \leq [\sigma_{\scriptscriptstyle CM}],$$

где $d_{\rm K}=110$ мм; h=16 мм; $t_1=10$ мм; $l_{\rm p}=140$ мм; $T=3243\cdot10^{-3}$ Н·мм, $[\sigma_{\rm CM}]=110$ МПа:

$$\sigma_{c_{M}} = \frac{2 \cdot 3243 \cdot 10^{3}}{110 \cdot 140 \cdot (16 - 10)} = 70 \le [\sigma_{c_{M}}] = 110$$
 МПа – условие

выполнено.

10. Уточненный расчет валов

В червячном редукторе уточненный расчет валов по запасу прочности проводится только для червячного колеса, проверка вала червяка проводится – по допускаемому прогибу.

<u>Сечение – соединение вала с зубчатым колесом.</u> Концентратор напряжений – в сечении «шпоночное соединение».

Изгибающие моменты в рассматриваемом сечении:

$$M_x = R_{x1} \cdot l_2 = 5200 \cdot 226, 4 = 1177280 \text{ H·mm};$$

$$\begin{split} M_{y1} = R_{y1} \cdot l_2 = 2728, 2 \cdot 226, 4 &= 617664 \text{ H·мм}; \\ M_{y2} = R_{y1} \cdot l_2 + F_a \frac{d_1}{2} = 2728, 2 \cdot 226, 4 + 1200 \frac{650}{2} = 1007664 \text{ H·мм}. \\ M_{\Sigma} = \sqrt{M_x^2 + M_y^2}; \\ M_x = R_{x3} l_2 = 600 \cdot 226, 4 = 135, 6 \cdot 10^3; \\ M_y = R_{y2} l_2 + F_a \frac{d_2}{2} = 9077 \cdot 226, 4 + 10400 \cdot \frac{625}{2} = 5305 \cdot 10^3 \text{ H·мм}. \end{split}$$

Суммарный изгибающий момент в сечении (12.7):

$$M_{\Sigma} = \sqrt{(1177.3 \cdot 10^3)^2 + (1007.7 \cdot 10^3)^2} = 1550 \cdot 10^3 \text{ H} \cdot \text{MM}.$$

Момент сопротивления кручению (12.8):

$$W_{\kappa} = \frac{\pi d^3}{16} - \frac{bt(d-t)^2}{2d} =$$

$$= \frac{3,14 \cdot 110^3}{16} - \frac{28 \cdot 10(110 - 10)^2}{2 \cdot 110} = 184910 \text{ mm}^3$$

где d=110 мм – диаметр вала в рассматриваемом сечении; $t=10,\ b=28$ мм – ширина и глубина шпоночного паза (табл. 47).

Момент сопротивлений изгибу, мм³ (12.9):

$$W = \frac{\pi d^3}{32} - \frac{bt(d-t)^2}{2d} =$$

$$= \frac{3,14 \cdot 110^3}{32} - \frac{28 \cdot 10(110 - 10)^2}{2 \cdot 110} = 86785 \text{ mm}^3$$

Коэффициенты запаса прочности по нормальным и по касательным напряжениям (12.2):

$$\sigma_{v} = \frac{M_{\Sigma}}{W} = \frac{1550 \cdot 10^{3}}{184910} = 8,4 \text{ M}\Pi\text{a}.$$

$$S_{\sigma} = \frac{\sigma_{-1}}{\frac{k_{\sigma}}{\varepsilon_{\sigma}} \sigma_{v} + \psi_{\sigma} \sigma_{m}} = \frac{246}{\frac{1,7}{0,88} \cdot 23 + 0,3 \cdot 13,9} = 5,0,$$

где $\frac{k_{\tau}}{\varepsilon_{\tau}}$ – см. таблица 51 (примечание), $\sigma_m = \frac{4 \cdot 1200}{3,14 \cdot 110} = 13,9\,$ МПа, $\psi_{\tau} = 0,1.$

$$\tau_{v} = \tau_{m} = \frac{3346 \cdot 10^{3}}{2 \cdot 86785} = 20 \,\text{M}\Pi\text{a},$$

$$s_{\tau} = \frac{\tau_{-1}}{\frac{k_{\tau}}{\varepsilon_{\tau}} \tau_{\upsilon} + \psi_{\tau} \tau_{m}} = \frac{142}{1,56 \cdot 20 + 0,1 \cdot 20} = 4,3.$$

где: $k_{\tau} / \varepsilon_{\tau} = 0.6 \cdot 1.7 / 0.88 + 0.4 = 1.56$

Результирующий коэффициент запаса прочности:

$$s = \frac{s_{\sigma}s_{\tau}}{\sqrt{s_{\sigma}^2 + s_{\tau}^2}} = \frac{5,0 \cdot 4,3}{\sqrt{5,0^2 + 4,3^2}} = 3,2.$$

Сечение вала по запасу прочности проходит.

11. Выбор сорта масла

Смазывание производится окунанием червяка в масло. Определим объем масляной ванны

$$V = 0.6 \cdot 11 = 6.6\pi$$

По табл. 52 выбираем вязкость масла 15 $\cdot 10^{-6}$ м²/с (при $\sigma_H = 168$ МПа, $\upsilon \ge 5$ м/с).

Согласно табл. 52 выбираем масло индустриальное И-12А.

12. Тепловой расчет червячного редуктора

Условие работы редуктора без перегрева (14.1):

$$\Delta t = t_{M} - t_{B} = \frac{8.5 \cdot 10^{3} (1 - 0.78)}{17 \cdot 0.6} = 26 \le [\Delta t],$$

где $P_2=8,5$ кВт; $\eta=0.78$; $k_{\rm t}=11...17$ Вт/(м²·°С); $A=20a^{1.7}=4.2$ м²; $[\Delta t]=40...60$ ° – допускаемый перепад температур масла и окружающего воздуха.

Условие выполняется.

13. Проверка червяка на жесткость

Червячный вал проверяют по стреле прогиба червяка. Момент инерции поперечного сечения червяка, мм⁴ (15.1):

$$J_x = \frac{\pi d_{f1}^4}{64} \left(0.375 + 0.625 \frac{d_{a1}}{d_{f1}} \right) =$$

$$= \frac{3.14 \cdot 126.25^4}{64} \left(0.375 + 0.625 \frac{181.25}{126.25} \right) = 15.8 \cdot 10^6$$

Прогиб червяка (15.2):

$$f = \frac{l_1^3 \sqrt{F_{t1}^2 + F_{r1}^2}}{48EJ_x} < [f];$$

$$f = \frac{680^3 \sqrt{1200^2 + 3800^2}}{48 \cdot 2,1 \cdot 10^5 \cdot 15,8 \cdot 10^6} = 0,008 < [f],$$

где E — модуль упругости, для стали E = 2,1·10⁵ МПа. Допускаемый прогиб червяка, мм:

$$[f] = (0,005...0,01)m = (0,005...0,01)\cdot 12,5 = 0,0625...0,125,$$

где m — нормальный модуль зацепления, мм. Условие на жесткость выполнено.

Расчет привода с одноступенчатым коническим редуктором и цепной передачей

1. Исходные данные

Кинематическая схема привода (рис. 41). Потребляемая мощность P = 3 кВт. Угловая скорость на выходном валу $\omega_3 = 26$ рад/с. Срок службы редуктора 9000 ч.

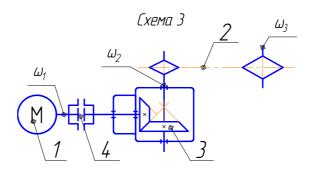


Рис 41. Кинематическая схема привода: 1 — электродвигатель; 2 — цепная передача; 3 — конический одноступенчатый редуктор;

4 — муфта

2. Кинематический и силовой расчет привода

1. Определим общий КПД привода, с учетом потерь в подшипниках (2.1):

$$\eta = \eta_2 \cdot \eta_7 \cdot \eta_6 \cdot \eta_8 \cdot \eta_8 = 0.97 \cdot 1.0 \cdot 0.93 \cdot 0.99 \cdot 0.99 = 0.88,$$

где η_2 , η_7 , η_6 , η_8 — соответственно КПД конической передачи, муфты, цепной передачи и подшипников качения (см. табл. 1).

2. Необходимая мощность электродвигателя (2.2):

$$P_1 = P_3/\eta = 3/0,88 = 3,4 \text{ kBt}.$$

- 3. Выбираем по табл. 2 асинхронный электродвигатель общего назначения с синхронной частотой вращения 1500 мин⁻¹ 4A100L4У3 $P_3 = 4 \text{ кBr}$, $n_3 = 1430 \text{ мин}^{-1}$.
 - 4. Находим общее передаточное число привода (2.3):

$$i = \frac{\omega_1}{\omega_3} = \frac{149.7}{26} = 5.8$$
,

где

$$\omega_1 = \pi n_3/30 = 3,14.1430/30 = 149,67$$
 рад/с.

По табл. 3 с учетом стандартного ряда передаточных чисел по ГОСТ 2185-66 выбираем передаточное отношение для конического одноступенчатого редуктора $i_1 = 2$. Тогда передаточное отношение цепной передачи:

$$i_2 = i/i_1 = 5.8/2 = 2.9$$

что соответствует интервалу передаточных чисел для цепной передачи (см. табл. 3).

- 5. Находим угловые скорости, частоты вращения, мощности и моменты на валах привода:
 - крутящий момент на валу электродвигателя (2.6):

$$T_1 = P_1/\omega_1 = 3400/149,7 = 22,7 \text{ H} \cdot \text{M};$$

• частота вращения на выходном валу редуктора:

$$n_2 = n_3/i_1 = 1430/2 = 715 \text{ MuH}^{-1};$$

• угловая скорость второго вала ω_2 :

$$\omega_2 = \omega_1/i_1 = 149,7/2 = 74,85$$
 рад/с;

• мощность:

$$P_2 = P_1 \eta_2 \eta_7 \eta_8 = 3.4 \cdot 0.97 \cdot 1 \cdot 0.99 = 3.3 \text{ kBt},$$

где η_1 , η_7 , η_8 — соответственно КПД зубчатой передачи с коническими колесами, муфты и подшипников качения (см. табл. 1);

• крутящий момент на втором валу:

$$T_2 = P_2/\omega_2 = 3300/74,85 = 44,1 \text{ H} \cdot \text{M};$$

• мощность на выходном (третьем) валу привода:

$$P_3 = P_2 \eta_6 \eta_8 = 3,3.0,93.0,99 = 3,0 \text{ kBT},$$

где η_6 , η_8 — соответственно КПД, подшипников качения и цепной передачи (см. табл. 1).

• угловая скорость ω_3 :

$$\omega_3 = \omega_2/i_2 = 74,85/2,9 = 25,8 \text{ pag/c},$$

где i_2 – передаточное отношение цепной передачи;

• крутящий момент на выходном (третьем) валу:

$$T_3 = P_3/\omega_3 = 3100/25, 8 = 120, 1 \text{ H} \cdot \text{M}.$$

3. Расчет цепной передачи.

Исходные данные:

- мощность ведущей звездочки $P_2 = 3.3$ кВт;
- момент на ведущей звездочки $T_2 = 44,1 \text{ H·м}$;
- угловая скорость ведущей звездочки $\omega_2 = 74,85 \text{ c}^{-1}$;
- частота вращения $n_2 = 715 \text{ мин}^{-1}$;
- передаточное отношение цепной передачи $i_2 = 2.9$.

Расчет цепной передачи выполнен аналогично расчету цепной передачи к приводу с червячным редуктором. В результате расчетов выбрана цепь ПР- 15,875-2270-1, получены значение силы, действующей на валы и опоры $-F_3 = 768,8$ Н и основные геометрические параметры передачи (см. табл. 62).

Таблица 62 Определение основных параметров звездочек

Параметры	Ведущей	Ведомой
Диаметры, мм:		
делительный d	d = 126,7	d = 369,0
окружности выступов d_a	$d_a = 134,1$	$d_a = 376,6$
окружности впадин d_f	$d_f = 116,4$	$d_f = 358,7$
Радиусы, мм:		
впадин <i>r</i>	r = 5,15	r = 5,15
закругления зуба r_1	$r_1 = 17,3$	$r_1 = 17,3$
Расстояние от вершины зуба		
до линии центров закругления	h = 8,128	h = 8,128
h, MM		
Толщина, мм:		
обода S	S = 7,94	S = 7,94
диска звездочки Δ	$\Delta = 11,11$	$\Delta = 1,11$
Ширина зуба звездочки b	b= 9,88	b= 9,88
Длина ступицы l_c , мм	$l_{\rm c} = 56$	$l_{\rm c} = 56$
Диаметры ступицы d_{c} , мм	$d_c = 54$	$d_c = 64$
Толщина ступицы S_c , мм	$S_{\rm c} = 16$	$S_{\rm c} = 16$

5. Расчет закрытой конической передачи

Исходные данные:

- мощность ведущего вала $P_1 = 3.4$ кВт;
- момент ведомого вала $T_2 = 44,1 \text{H} \cdot \text{м}$;
- угловая скорость шестерни $\omega_1 = 74,85$ рад/с;
- передаточное отношение $i_1 = 2$.

Выбираем материал шестерни и колеса Сталь 40X, термообработка – улучшение, твердость поверхности зубьев колеса HB = 245, шестерни HB = 260 (см. табл. 22).

Допускаемые напряжения (4.1):

$$\left[\sigma_{H}\right] = \frac{\sigma_{H \, \text{lim} \, b} K_{HL}}{\left[S_{H}\right]}$$

 $\sigma_{_{H \text{ lim }b}} = 2HB + 70 = 2 \cdot 245 + 70 = 560 \text{ МПа для колеса (см. табл. 23);}$ $\sigma_{_{H \text{ lim }b}} = 2HB + 70 = 2 \cdot 260 + 70 = 590 \text{ МПа для шестерни;}$ $K_{HL} = 1$; $[S_H] = 1,2$ (при улучшении $[S_H] = 1,1\dots 1,2$). Для колеса:

$$[\sigma_{H1}] = \frac{560 \cdot 1}{1,2} = 466,7$$
, M Π a.

Для шестерни:

$$[\sigma_{H2}] = \frac{590 \cdot 1}{1.2} = 491,7$$
, M Π a.

Для передач с различной твердостью шестерни и колеса (4.3):

$$[\sigma_H]$$
 = 0,45 · (466,7 + 491,7) ≤ 1,23 · 466,7 — условие выполнено.

Внешний диаметр основания делительного конуса колеса (6.1):

$$d_{e2} = 165 \sqrt{\frac{iT_2 K_{H\beta}}{\theta_H [\sigma_H]^2}} = 165 \sqrt{\frac{2 \cdot 44, 1 \cdot 10^3 \cdot 1, 2}{1 \cdot 431, 3^2}} = 124,6 \text{ MM}.$$

где $K_{H\beta}$ = 1,2 (см. табл. 25)

Округляем до стандартного по ГОСТ 12289-76 – $d_{\rm e2}$ = 125мм.

Внешнее конусное расстояние (6.2):

$$R_e = \frac{d_{e2}}{2}\sqrt{1 + (1/i^2)} = \frac{125}{2}\sqrt{1 + (1/2^2)} = 69.9 \text{ MM}.$$

Ширина зубчатого венца шестерни и колеса (6.3):

$$b = \psi_{bRe} R_{e} = 0.25 \cdot 69.9 = 17.7$$
 MM.

Округляем до ближайшего большего значения по ГОСТ 6636-69 $b=20~\mathrm{mm}$.

Окружная скорость конической передачи (4.8):

$$v = \frac{\omega_1 d_{e2} / i}{2 \cdot 10^3} = \frac{149.7 \cdot 125 / 2}{2 \cdot 10^3} = 4.68 \text{ M/c}.$$

Проверка конической пары по контактным напряжениям (6.4):

$$\sigma_{H} = \frac{335}{R} \sqrt{\frac{T_{2}K_{H}\sqrt{(i^{2}+1)^{3}}}{bi^{2}}} \le [\sigma_{H}] =$$

$$= \frac{335}{59.5} \sqrt{\frac{44100 \cdot 1,41 \cdot \sqrt{(2^{2}+1)^{3}}}{17,7 \cdot 2^{2}}} = 557.9 \le 574 \text{ M}\Pi a.$$

где $R=R_{_e}-0.5b=69.9-0.5\cdot 20=59.5$; $K_{_{H}}=K_{_{H\beta}}K_{_{H\alpha}}K_{_{H\alpha}}=1.2\cdot 1.02\cdot 1.15=1.41$; $K_{_{H\alpha}}=1.02$ (см. табл. 29); $K_{_{H0}}=1.15$ (см. табл. 28).

Угол делительного конуса колеса и шестерни (6.6):

$$\delta_1 = 90 - \delta_2 = 90 - 63,4 = 26,67^{\circ}$$
 –шестерни, $\delta_2 = arctg(i) = arctg2 = 63,43^{\circ}$ – колеса.

Число зубьев колеса и шестерни:

$$z_2 = 18 \cdot \sqrt[5]{2^2} \cdot \sqrt[6]{125} = 18 \cdot 1,32 \cdot 2,236 = 53,107;$$

$$z_1 = \frac{53,107}{2} = 26,55.$$

Округляем число зубьев шестерни до ближайшего значения z_1 =27.

С учетом этого число зубьев колеса:

$$z_2 = 27 \cdot 2 = 54$$
.

Фактическое передаточное число (6.8):

$$i_{\phi} = \frac{z_2}{z_1} = \frac{54}{27} = 2$$
.

Отклонение передаточного числа (6.9):

$$\Delta U = \frac{2-2}{2} = 0\%$$
.

Эквивалентное число зубьев (6.10):

$$z_v = \frac{z_1}{\cos^3 \beta \cos \delta} = \frac{27}{\cos^3 35 \cdot \cos 26,27} = \frac{27}{0,55 \cdot 0,85} = 55.$$

Внешний окружной модуль (6.9):

$$m_{e2} = \frac{d_{e2}}{z_2} = \frac{125}{53,127} = 2,35 \text{ MM}.$$

Средний окружной модуль (6.8):

$$m = \frac{m_{e2}R}{R_e} = \frac{2,35 \cdot 59,5}{69,9} = 2,0$$
 MM.

Из табл. 31 при улучшении:

$$\left[\sigma_{F}\right] = \frac{1,8HB}{\left[S_{F}\right]} = \frac{1,8 \cdot 245}{1,75} = 252 \text{ M}\Pi \text{a},$$

где

$$[S_F]=[S_F]'[S_F]''=1,75\cdot 1=1,75.$$

Проверка зубьев конического прямозубого колеса по напряжениям изгиба (6.11):

$$\sigma_F = 3,64 \cdot 1,3 \cdot 1,035 \cdot \frac{2 \cdot 10^3 \cdot 22,7}{0,85 \cdot 27 \cdot 6,75 \cdot 2,3^3} = 116,4 \le 252 \text{ M}\Pi a,$$

где $Y_{\rm F}$ =3,64 (см. табл. 30), $\psi_{_{m}}=\psi_{_{bd}}z_{_{1}}=27\cdot0,25=6,76$, $K_{_{F\beta}}=1,3$ (см. табл. 26), $K_{_{F\nu}}=1,035$ (см. табл. 28).

Проектировочный расчет модуля, мм:

$$m = \sqrt[3]{Y_F K_{F\beta} K_{F\nu} \frac{2 \cdot 10^3 T_1}{0,85z \psi_m [\sigma_F]}} = \sqrt{3,64 \cdot 1,035 \cdot 1,3 \frac{2 \cdot 1000 \cdot 22,7}{0,85 \cdot 27 \cdot 6,75 \cdot 252}} = 1,78$$

Проектировочный модуль меньше среднего окружного модуля, следовательно, коническая передача по напряжениям изгиба проходит.

Основные геометрические размеры зубчатых колес приведены в табл. 63, мм

Таблица 63

Геометрические параметры зубчатых колес

Параметр	Шестерня	Колесо
Средний делительный диаметр,	$d_1 = 2.0 \cdot 27 = 54$	$d = 2 \cdot 54 = 108$
MM		
Внешняя высота зуба h_e , мм	$h_e = 2, 2 \cdot 2, 31 = 5, 1$	$h_e = 2, 2 \cdot 2, 31 = 5, 1$
Внешняя высота головки зуба	$h_{ae} = 2.31$	$h_{ae} = 2.31$
h_{ae} , MM		
Внешняя высота ножки зуба	$h_{fe} = 1, 2 \cdot 2, 31 = 2,8$	$h_{fe} = 1, 2 \cdot 2, 31 = 2,8$
h_{fe} , mm		
Угол головки зуба δ_a , град	$\delta_a = \delta_f$	$\delta_a = \delta_f$
Угол ножки зуба δ_f , град	$\delta_f = arctg(2,8/69,9) = 2,3$	$\delta_f = arctg(2,8/69,9) = 2,3$
Внешний диаметр вершин	$d_{ae} = 125/2 +$	$d_{ae} = 125 +$
зубьев, d_{ae} , мм	$+2,31\cos 26,27=64,6$	$+2,31\cos 63,43=126,0$

Силы, действующие в зацеплении:

• окружная сила:

$$F_{t1} = F_{t2} = \frac{2T_2}{d_2} = \frac{2 \cdot 44,1 \cdot 10^3}{125} = 705,6 \text{ H};$$

• радиальные силы:

$$F_{r1} = F_t tg\alpha \cdot \sin \delta_2 = 705,6 \cdot 0,364 \cdot 0,894 = 229,6 \text{ H};$$

 $F_{r2} = F_t \cdot tg\alpha \cdot \sin \delta_1 = 705,6 \cdot 0,364 \cdot 0,447 = 114,8 \text{ H};$

• осевые силы:

$$F_{a1} = F_{r2} = 114,8 \text{ H};$$

$$F_{a2} = F_{r1} = 229,6 \,\mathrm{H}.$$

5. Предварительный расчет валов и конструктивные размеры корпуса редуктора

Диаметр выходного конца ведущего вала (формула (7.1)) при $T_1=22,7$ H·м:

$$d_1 \ge \sqrt[3]{\frac{16T_1}{\pi[\tau_k]}} = \sqrt[3]{\frac{16 \cdot 22, 7 \cdot 10^3}{3, 14 \cdot 15}} = 19,75 \text{ MM}.$$

Полученный результат округляем до ближайшего большего значения из стандартного ряда: $d_1 = 20$ мм.

Так как выходной конец выходного вала непосредственно соединен с валом электродвигателя, из прил. 1 приложения выбираем диаметр $d_1 = 28$ мм.

Диаметр выходного конца ведомого вала:

$$d_2 \ge \sqrt[3]{\frac{16T_2}{\pi[\tau_k]}} = \sqrt[3]{\frac{16 \cdot 44, 1 \cdot 10^3}{3, 14 \cdot 15}} = 24,65 \text{ MM}.$$

С учетом значительной консольной нагрузки на вал от натяжения цепи примем диаметр выходного конца ведомого вала 30 мм.

Диаметр вала между выходным концом и посадочным местом под подшипник должен быть $d_{\rm B} < d_{\rm I} < d_{\rm 3}$ и кратным 5.

Для ведущего вала: $d_{\rm B1} = 28$ мм, $d_{\rm \Pi1} = 30$ мм.

Для ведомого вала: $d_{\rm B2} = 30$ мм, $d_{\rm H2} = 35$ мм, $d_{\rm 3K} = 40$ мм.

Определение параметров корпуса и крышки редуктора.

Расчетное значение толщины стенок корпуса и крышки одноступенчатого редуктора (табл. 64) округляем до нормального ряда чисел (не менее 8).

Таблица 64 Расчет параметров корпуса и крышки редуктора, мм

Элементы корпуса	Расчет значений
Толщина стенок	
корпуса	$\delta = 0.05R_e + 1 = 0.05.69.9 + 1 = 4.49 \cong 8$
крышки	$\delta_1 = (0,80,9)\delta = (0,80,9) \cdot 8 = 6,40,72 \cong 8$
Толщина фланцев	
верхнего	b = 1.58 = 1.5.8 = 12.0
нижнего	$p = 2.35\delta = 2.35.8 = 18.8 \cong 20$

Диаметр болтов (округляем согласно нормальному ряду диаметров резьбы):

• фундаментных (не менее 10 мм):

$$d_1 = 1.8\sqrt[3]{T_2} = 1.8\sqrt[3]{44.1} = 6.4 \cong 10 \text{ mm};$$

• крепящих крышку к корпусу подшипников (не менее 8 мм):

$$d_2 = (0,7...0,756) \cdot 8 \cong 8$$
MM;

• соединяющих крышку с корпусом (не менее 8 мм):

$$d_3 = (0.5...0.6)d_1 = 8 \text{ MM}.$$

6. Первый этап компоновки зубчатого конического редуктора

Первый этап компоновки (см. разд. 8), выполняется на миллиметровой бумаге (рис. 42).

Зазор между внутренней стенкой корпуса и торцом ступицы конического колеса:

$$c_1 = (1...1,2)\delta = (1...1,25) \cdot 8 = (8...10) \cong 8 \text{ MM}.$$

Длина ступицы конического колеса:

$$L_{\text{ct}} = (1,6...1,8)d_{\text{B2}} = (1,6...1,8)\cdot 30 = (48...54) \cong 50 \text{ MM}.$$

Размер прилива k, в котором размещен комплект вала конической шестерни с подшипниками определяется из следующего выражения:

$$k = (3...2,3)d_{\text{болт}} = (3...2,3)\cdot 9 = 27...20,7 \approx 24 \text{ MM},$$

где $d_{\text{бол}} = 9$ мм (см. рис. 12).

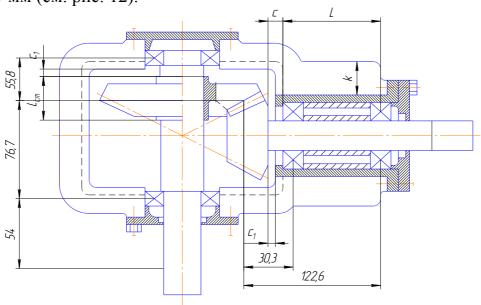


Рис. 42. Первый этап компоновки конического одноступенчатого редуктора

Предварительно по диаметрам вала ($d_{\Pi 1} = 30$ мм, $d_{\Pi 2} = 35$ мм) выбираем подшипники (см. прил. 2):

- На ведущем валу №36206 (d_{Π} = 30 мм, D = 62 мм, B = 16 мм, C = 16,3 кH, C_0 = 21,9 кH);
- На ведомом валу №36207 (d_{Π} = 35 мм, D = 72 мм, B = 17 мм, C = 20 кH, C_0 = 29,0 кH).

Определим смещение точки приложения реакции размер a_1 для однорядных радиально-упорных подшипников, мм:

$$a_1 = 0.5 \left[B + \frac{(d+B)}{2} tg\alpha \right] = 0.5 \left[16 + \frac{(30+16)}{2} tg12 \right] = 10.4;$$

$$a_2 = 0.5 \left[B + \frac{(d+B)}{2} tg\alpha \right] = 0.5 \left[17 + \frac{(35+17)}{2} tg12 \right] = 11.3$$

где B, d, $tg \alpha - cm$. прил. 2.

После всех построений путем измерения находим:

- на ведущем валу: $l_1 = 30,3$ мм; $l_2 = 122,6$ мм;
- на ведомом валу: $l'_1 = 55,8$ мм; $l'_2 = 76,7$ мм.

Назначаем смазку подшипников масляным туманом. Выбираем под подшипник глубину гнезда $l_{\rm r1}=1.5{\rm B}=1.5\cdot 16=24$ мм; $l_{\rm r2}=1.5B=1.5\cdot 17=25.5$ мм.

Толщина фланца крышки (см. рис. 12) $\Delta = 10$ мм.

Высоту головки болта примем равной $0.7d_0 = 0.7.6 = 4.2$ мм.

Длина пальца:

$$l = t + 5 = 15.875 + 5 = 20.875$$
 MM,

где t = 15,875 -шаг цепи.

Измерением находим расстояние $l_3 = 53,4$ мм.

Окончательно примем:

- на ведущем валу: $l_1 = 30,3 10,4 = 19,9$ мм; $l_2 = 122,6 + 10,4 = 133$ мм;
- на ведомом валу: $l'_1 = 55.8 + 11.3 = 67.1$ мм; $l'_2 = 76.7 + 11.3 = 88$ м мм; $l_3 = 54$ мм.

7. Проверка долговечности подшипников

Ведущий вал (рис. 43). Момент быстроходного вала $T_1 = 22700$ Н·мм; угловая скорость быстроходного вала $\omega_1 = 149,7$ с⁻¹; внешний диаметр основания шестерни $d_{e1} = 62,5$ мм; силы в зацеплении: окружная $F_t = 705,6$ Н; радиальная: $F_r = 229,6$ Н; осевая $F_a = 114,8$ Н; диаметр вала шестерни под подшипник $d_1 = 30$ мм.

Плоскость ҮΖ:

$$\Sigma M_2 = 0; -F_a \cdot \frac{d_{e1}}{2} + F_r \cdot (l_1 + l_2) - R_{y1} \cdot l_2 = 0;$$

$$R_{y1} = \frac{-F_a \frac{d_{e1}}{2} + F_r (l_1 + l_2)}{l_2} = \frac{-114,8 \frac{62,5}{2} + 229,6(19,9 + 113,1)}{113,1} = 238,3 \text{ H}.$$

$$\Sigma M_1 = 0; -F_a \cdot \frac{d_{e1}}{2} + F_r \cdot l_1 - R_{y2} \cdot l_2 = 0;$$

$$R_{y2} = \frac{-F_a \cdot \frac{d_{e1}}{2} + F_r \cdot l_1}{l_2} = \frac{-114.8 \cdot \frac{62.5}{2} + 229.6 \cdot 19.9}{113.1} = 8.7 \text{ H}.$$

Проверка: 238,3 - 229,6 - 8,7 = 0.

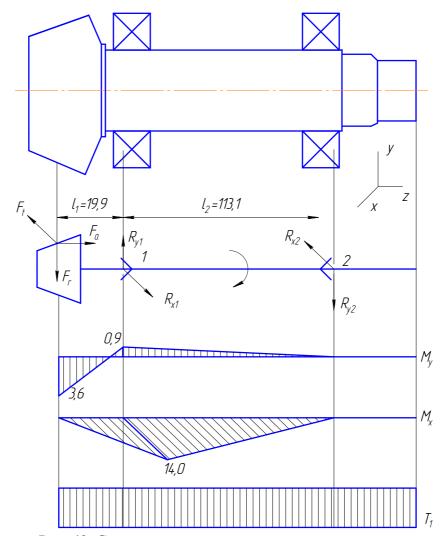


Рис. 43. Силы на ведущем валу конического редуктора

Плоскость XZ:

$$\Sigma M_2 = 0; -F_t(l_1 + l_2) + R_{x_1} \cdot l_2 = 0;$$

$$R_{x_1} = \frac{F_t(l_1 + l_2)}{l_2} = \frac{705,6(19,9 + 113,1)}{113,1} = 829,8 \text{ H.}$$

$$\Sigma M_1 = 0; -F_t \cdot l_1 + R_{x_2} \cdot l_2 = 0$$

 $R_{x2} = \frac{F_{t1} \cdot l_1}{l_2} = \frac{705,6 \cdot 19,9}{113,1} = 124,2$

Проверка: 705,6 - 829,8 + 124,2 = 0

Суммарные реакции (9.1; 9.2):

$$P_{r1} = \sqrt{829.8^2 + 238.3^2} = 863.3 \text{ H};$$

$$P_{r2} = \sqrt{124,2^2 + 8,7^2} = 124,5 \text{ H}.$$

Построение эпюр изгибающих моментов показано на рис. 43.

Подбираем подшипники по более нагруженной опоре 1.

Проверим ранее выбранный подшипник № $36206 - d_{\Pi} = 30$ мм, $D_2 = 62$ мм, C = 16.3 кH, $C_0 = 21.9$ кH.

Эквивалентная нагрузка для подшипников (9.3; 9.4):

$$\frac{F_a}{C_0} = \frac{114.8}{21900} = 0.005.$$

Этой величине соответствует e = 0.3 (см. табл. 46).

$$\frac{F_a}{VF_r} = \frac{114,8}{1 \cdot 229,6} = 0,5 \ge 0,3,$$

следовательно

$$P_9 = (XVP_{rx} + YF_a)K_{\delta}K_T =$$
= (0,45 · 1 · 863,3 + 1,81 · 114,8)1,3 · 1,05 = 813,9 H,

где
$$X = 0,45$$
; $K_6 = 1,3$; $V = 1$; $Y = 1,81$; $K_T = 1,05$ (см. табл. 46)

Долговечность подшипника, в часах (9.5):

$$L_h = \frac{10^6}{60n_1} \cdot \left(\frac{C}{P_{\text{amax}}}\right)^3$$
;

$$L_h = \frac{10^6}{60 \cdot 1430} \cdot \left(\frac{16300}{813,9}\right)^3 = 93618 \text{ ч},$$

где $P_{9 \text{ max}}$ — максимальная эквивалентная нагрузка; n_1 — частота вращения кольца подшипника; C — динамическая грузоподъемность, H.

Подшипники на долговечность проходят, т.к. срок службы редуктора составляет 9000 ч.

Ведомый вал (рис. 44). Исходные данные: внешний диаметр основания колеса d_{e2} = 125 мм; силы в зацеплении: окружная F_t = 705,6 H; радиальная: F_r = 114,8 H; осевая F_a = 229,6 H; нагрузка от цепной передачи F_3 = 768,8 H.

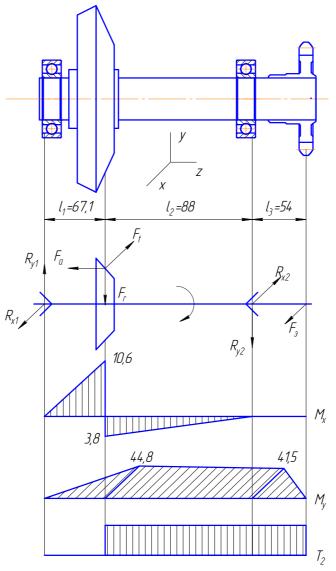


Рис. 44. Силы и моменты на валу конического колеса (эпюры построены на сжатом волокне).

Плоскость ҮΖ:

$$\Sigma M_1 = 0; \ F_a \cdot \frac{d_{e2}}{2} - F_r \cdot l_1 - R_{y2}(l_1 + l_2) = 0;$$

$$R_{y2} = \frac{F_a \cdot \frac{d_{e2}}{2} - F_r \cdot l_1}{l_1 + l_2} = \frac{229.6 \cdot \frac{125}{2} - 114.8 \cdot 67.1}{67.1 + 88} = 42.9 \text{ H}.$$

$$\Sigma M_2 = 0; \ F_a \cdot \frac{d_{e2}}{2} + F_r \cdot l_2 - R_{y1}(l_1 + l_2) = 0.$$

$$R_{y1} = \frac{F_a \frac{d_{e2}}{2} + F_r \cdot l_2}{l_1 + l_2} = \frac{229.6 \frac{125}{2} + 114.8 \cdot 88}{155.1} = 157.7 \text{ H}.$$

Проверка: 157,7 - 114,8 - 42,9 = 0.

Плоскость XZ:

$$\Sigma M_1 = 0 \; ; \; F_t \cdot l_1 + R_{x2}(l_1 + l_2) - F_3(l_1 + l_2 + l_3) = 0 \; ;$$

$$R_{x2} = \frac{F_3(l_1 + l_2 + l_3) - F_t \cdot l_1}{l_1 + l_2} = \frac{768,8(67,1 + 88 + 54) - 705,6 \cdot 67,1}{56 + 76} = 731,2 \; \text{H}.$$

$$\Sigma M_2 = 0; \ R_{x1} \cdot (l_1 + l_2) - F_t \cdot l_2 - F_3 \cdot l_3 = 0;$$

$$R_{x1} = \frac{F_t \cdot l_2 + F_3 \cdot l_3}{l_1 + l_2} = \frac{705,6 \cdot 88 + 768,8 \cdot 54}{56 + 76} = 668 \text{H}.$$

Проверка: (-668 + 705,6 + 731,2 - 768,8) = 0.

Суммарные реакции (9.1; 9.2):

$$P_{r1} = \sqrt{668^2 + 157,7^2} = 686,4 \text{ H};$$

$$P_{r2} = \sqrt{731,2^2 + 42,9^2} = 732,5 \text{ H}.$$

Построение эпюр изгибающих моментов показано на рис. 44.

Подбираем подшипники по более нагруженной опоре 2.

Ранее выбран подшипник № 36207 – d_{Π} = 35 мм, D_2 = 72 мм, C = 20 кH, C_0 = 29,0 кH.

Эквивалентная нагрузка для подшипников (9.3):

$$\frac{F_a}{C_0} = \frac{229.6}{29000} = 0.008$$
.

Этой величине соответствует e = 0.3 (см. табл. 46).

$$\frac{F_a}{VF_r} = \frac{229.6}{1.114.8} = 2 \ge 0.3$$
,

следовательно

$$P_9 = (XVP_{rx} + YF_a)K_6K_T =$$
= (0,45 · 1 · 732,5 + 1,81 · 229,6)1,3 · 1,05 = 1017,2 H,

где
$$X = 0.45$$
; $K_6 = 1.3$; $V = 1$; $Y = 1.81$; $K_T = 1.05$ (см. табл. 46).

Долговечность подшипника, в часах (9.5):

$$L_h = \frac{10^6}{60n_2} \cdot \left(\frac{C}{P_{9\,\mathrm{max}}}\right)^3; \qquad L_h = \frac{10^6}{60 \cdot 715} \cdot \left(\frac{20000}{1017,2}\right)^3 = 0,18 \cdot 10^6 \,\,\mathrm{ч},$$

где $P_{9 \text{ max}}$ — максимальная эквивалентная нагрузка; n_2 — частота вращения кольца подшипника; C — динамическая грузоподъемность, H.

Подшипники на долговечность проходят, т.к. срок службы редуктора составляет 9000 ч.

8. Второй этап компоновки цилиндрического одноступенчатого редуктора.

На втором этапе компоновки конструктивно оформляются зубчатые колеса, валы, корпус, подшипниковые узлы и определяют данные необходимые для проверки прочности валов.

Второй этап компоновки выполняется в последовательности, указанной в разд. 10 методики расчета.

1. Подбор шпонок по прочности шпоночных соединений.

Материал шпонок – сталь 45, термообработка – нормализация, ведущий вал d=28 мм.

По табл. 47 выбираем шпонку сечением $b \times h = 8 \times 7$ мм, $t_1 = 4,0$ мм, длина шпонки l = 50 мм, т.к. длина полумуфты МУВП (табл. 55) для вала диаметром 28 мм составляет 60 мм.

Проверим шпонку по напряжению смятия (11.1):

$$\sigma_{\scriptscriptstyle CM} = \frac{2T}{d_1 l_p (h - t_1)} \leq [\sigma_{\scriptscriptstyle CM}],$$

где $d_1 = 28$ мм; h = 7 мм; $t_1 = 4,0$ мм; $l_p = 50 - 10 = 40$ мм; T = 22,7 Н·мм; $[\sigma_{cm}] = 60$ МПа (материал полумуфт – чугун):

$$\sigma_{cM} = \frac{2 \cdot 22,7 \cdot 10^3}{28 \cdot 40 \cdot (7-4)} = 13,5 \le 60.$$

Ведомый вал d = 30 мм.

По таблице 47 выбираем шпонку сечением $b \times h = 10 \times 8$ мм, $t_1 = 5,0$ мм, длина шпонки l = 46 мм, т.к. длина ступицы звездочки цепной передачи $l_c = 56$ мм (см. табл. 62).

Проверим шпонку по напряжению смятия (11.1):

$$\sigma_{\scriptscriptstyle CM} = \frac{2T}{d_1 l_p (h - t_1)} \leq [\sigma_{\scriptscriptstyle CM}],$$

где $d_1 = 30$ мм; h = 8 мм; $t_1 = 5.0$ мм; $l_p = 46 - 10 = 36$ мм; T = 44.1 Н·мм; $[\sigma_{cm}] = 100$ МПа (материал звездочки – сталь 45):

$$\sigma_{CM} = \frac{2 \cdot 44,1 \cdot 10^3}{30 \cdot 36 \cdot (8-5)} = 27,2 \le 100.$$

Условие $\sigma_{c_{M}} \leq [\sigma_{c_{M}}]$ – выполнено.

Ведомый вал d = 40 мм.

По таблице 47 выбираем шпонку в соединении с зубчатым колесом сечением $b \times h = 12 \times 8$ мм, $t_1 = 5,0$ мм, длина шпонки l = 40 мм, т.к. длина ступицы конического колеса $L_{\rm cr} = 50$ мм (см. разд. 6).

Проверим шпонку по напряжению смятия (11.1):

$$\sigma_{\scriptscriptstyle CM} = \frac{2T}{d_1 l_p (h - t_1)} \leq [\sigma_{\scriptscriptstyle CM}],$$

где $d_1=40$ мм; h=8 мм; $t_1=5,0$ мм; $l_{\rm p}=50-10=40$ мм; T=44,1 Н·мм; $[\sigma_{\rm cm}]=100$ МПа (материал конического колеса — сталь 45):

$$\sigma_{CM} = \frac{2 \cdot 44, 1 \cdot 10^3}{40 \cdot 40 \cdot (8 - 5)} = 18, 4 \le 100.$$

Условие $\sigma_{\scriptscriptstyle {\it CM}} \leq [\sigma_{\scriptscriptstyle {\it CM}}]$ – выполнено.

2. Уточненный расчет валов

Ведущий вал (см. рис. 43). Материал шестерни и колеса — сталь 40X, термообработка — улучшение. Шестерня выполнена заодно с валом.

По табл. 22 (диаметр заготовки < 120 мм) значение $\sigma_{\text{в}}$ = 930 МПа. Предел выносливости при симметричном цикле изгиба:

$$\sigma_{-1} = 0.43 \sigma_{\rm B} = 0.43.930 = 400 \text{ M}\Pi a.$$

Предел выносливости при симметричном цикле касательных напряжений (12.1):

$$\tau_{-1} \approx 0.58 \sigma_{-1} = 0.58 \cdot 400 = 232 \text{ M}\Pi a.$$

Рассмотрим только сечение быстроходного вала, в котором концентратором напряжений является посадка подшипника (ближнего к шестерни) с гарантированным натягом, возникают касательные напряжения (рис. 34) (12.2):

$$\frac{\kappa_\sigma}{\varepsilon_\sigma}$$
 = 3,8 и $\frac{\kappa_\tau}{\varepsilon_\tau}$ = 0,6 · 3,8 + 0,4 = 2,68 , ψ_σ = 0,25 , ψ_τ = 0,1.

Изгибающий момент:

$$M_{\Sigma} = \sqrt{M_x^2 + M_y^2};$$

$$M_x = R_{x1}l_1 = 829,8 \cdot 19,9 = 16,5 \cdot 10^3 \text{ H·mm};$$

$$M_y = F_a \frac{d_{e1}}{2} = 114,8 \cdot \frac{62,5}{2} = 3,6 \cdot 10^3 \text{ H·mm};$$

$$M_{\Sigma} = \sqrt{(16,5 \cdot 10^3)^2 + (3,6 \cdot 10^3)^2} = 16,9 \cdot 10^3 \text{ H·mm}.$$

Осевой момент сопротивления:

$$W = \frac{\pi d^3}{32} = \frac{3.14 \cdot 30^3}{32} = 2650 \text{ mm}^3.$$

Амплитуда нормальных напряжений:

$$\sigma_{\nu} = \sigma_{m} = \frac{M_{\Sigma}}{W} = \frac{16900}{2650} = 6.4 \text{ M}\Pi \text{a}.$$

Полярный момент сопротивления:

$$W_P = 2W = 2.2650 = 5.3.10^3 \text{ mm}^3$$
.

Амплитуда касательных напряжений:

$$\tau_{\rm p} = T_1/2W_{\rm p} = 22700/2.5300 = 2.1 \text{ M}\Pi \text{a}$$

Коэффициенты запаса прочности по нормальным и по касательным напряжениям:

$$S_{\sigma} = \frac{\sigma_{-1}}{\frac{k_{\sigma}}{\varepsilon_{\sigma}} \sigma_{\upsilon} + \psi_{\sigma} \sigma_{m}} = \frac{400}{3,8 \cdot 6,4 + 0,25 \cdot 6,4} = 15,4.$$

Амплитуда и среднее значение цикла касательных напряжений:

$$\tau_{_{\mathcal{O}}} = \tau_{_{m}} = \frac{22700}{2 \cdot 2650} = 4,3;$$

$$S_{\tau} = \frac{\tau_{-1}}{\frac{k_{\tau}}{\varepsilon_{\tau}} \tau_{\upsilon} + \psi_{\tau} \tau_{m}} = \frac{232}{2,68 \cdot 4,3 + 0,1 \cdot 4,3} = 19,4.$$

Результирующий коэффициент запаса прочности:

$$s = \frac{s_{\sigma} s_{\tau}}{\sqrt{s_{\sigma}^2 + s_{\tau}^2}} = \frac{15,4 \cdot 19,4}{\sqrt{15,4^2 + 19,4^2}} = 12,0.$$

Ведомый вал (рис. 35). Проверяем только сечение, в котором концентратором напряжений является шпоночное соединение вала с зубчатым колесом.

Материал вала — сталь 45, термообработка — нормализация, $\sigma_{\scriptscriptstyle B} = 570$ МПа (см. табл. 22).

Предел выносливости при симметричном цикле изгиба:

$$\sigma_{-1} = 0.43 \sigma_{\rm B} = 0.43.570 = 246 \text{ M}\Pi a.$$

Предел выносливости при симметричном цикле касательных напряжений:

$$\tau_{-1} \approx 0.58 \sigma_{-1} = 0.58.246 = 142 \text{ M}\Pi a.$$

$$\frac{\kappa_{\sigma}}{\varepsilon_{\sigma}}$$
 = 3,8 и $\frac{\kappa_{\tau}}{\varepsilon_{\tau}}$ = 0,6 · 3,8 + 0,4 = 2,68, ψ_{σ} = 0,25, ψ_{τ} = 0,1.

Суммарный изгибающий момент в этом сечении:

$$\begin{split} M_{\Sigma} &= \sqrt{M_x^2 + M_y^2}\,;\\ M_x &= R_{x1}l_1 = 668 \cdot 67, 1 = 44, 8 \cdot 10^3 \text{ H·mm};\\ M_y &= F_a \frac{d_{e2}}{2} = 229, 6 \cdot \frac{125}{2} = 14, 4 \cdot 10^3 \text{ H·mm};\\ M_{A-A} &= \sqrt{(44, 8 \cdot 10^3)^2 + (14, 4 \cdot 10^3)^2} = 47, 1 \cdot 10^3 \text{ H·mm}. \end{split}$$

Момент сопротивления кручению:

$$W_{\text{K HETTO}} = \frac{\pi d^3}{16} - \frac{bt(d-t)^2}{2d} = \frac{3,14 \cdot 30^3}{16} - \frac{12 \cdot 5(30-5)^2}{2 \cdot 30} = 4674 \text{ H} \cdot \text{MM}^3$$

где d = 30 мм, t = 5 мм, b = 12 мм.

Момент сопротивлений изгибу:

$$W_{\text{K HETTO}} = \frac{\pi d^3}{32} - \frac{bt(d-t)^2}{2d} = \frac{3,14 \cdot 30^3}{32} - \frac{12 \cdot 5(30-5)^2}{2 \cdot 30} = 2024,4 \text{ H·MM}^3.$$

Амплитуда и среднее напряжение цикла касательных напряжений:

$$\tau_{_{\mathcal{O}}} = \tau_{_{m}} = \frac{T_{2}}{2W_{_{\text{K HETTO}}}} = \frac{44,1 \cdot 10^{3}}{2 \cdot 2024,4} = 10,9 \text{ M}\Pi a.$$

Амплитуда нормальных напряжений изгиба:

$$\sigma_{\nu} = \frac{M_{A-A}}{W_{\text{HeTTO}}} = \frac{47,1 \cdot 10^3}{4674} = 10,1 \text{ M}\Pi a.$$

Коэффициенты запаса прочности по нормальным и по касательным напряжениям:

$$S_{\sigma} = \frac{\sigma_{-1}}{\frac{k_{\sigma}}{\varepsilon_{\sigma}}\sigma_{v} + \psi_{\sigma}\sigma_{m}} = \frac{246}{3.8 \cdot 10.1 + 0.25 \cdot 10.1} = 6.0;$$

$$S_{\tau} = \frac{\tau_{-1}}{\frac{k_{\tau}}{\varepsilon_{\tau}} \tau_{\upsilon} + \psi_{\tau} \tau_{m}} = \frac{142}{2,0 \cdot 10,9 + 0,25 \cdot 10,9} = 5,8.$$

Результирующий коэффициент запаса прочности:

$$s = \frac{s_{\sigma}s_{\tau}}{\sqrt{s_{\sigma}^2 + s_{\tau}^2}} = \frac{6.0 \cdot 5.8}{\sqrt{6.0^2 + 5.8^2}} = 4.2.$$

11. Выбор сорта масла

Смазывание конического зацепления производится окунанием конического колеса в масло на высоту зуба. Масло залито в редуктор на 10 мм.

Определим объем масляной ванны V = 0.6.4 = 2.4 л.

По табл. 52 выбираем вязкость масла (при σ_H = 557,9 МПа, υ = 4,68 м/c) – 28 ·10⁻⁶ м²/c.

Согласно табл. 53 выбираем масло индустриальное И-30А.

12. Подбор муфты

По табл. 55 выбираем муфту – 125–28–1–У3, ГОСТ 21424-93. Расчетный момент муфты:

$$T_{\text{pacy}} = K \cdot T_1 = 1,5 \cdot 22,7 = 34,1 \text{ H} \cdot \text{M}^3,$$

где K = 1,5; $T_1 = 22,7 \text{ H·м}^3$.

Диаметр вала, непосредственно соединенного с муфтой, $-d_1$ = 28 мм, крутящий момент передаваемый муфтой $T_{\rm pacu}$ = 34,1 H·м.

Проверочный расчет муфты МУВП по давлению пальца на втулку (17.2):

$$p = \frac{2T_{pacu}}{zD_0 d_n l} = \frac{2 \cdot 34, 1 \cdot 10^3}{4 \cdot 84 \cdot 14 \cdot 60} = 0, 2 \le [p],$$

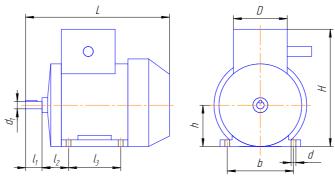
где согласно табл. 55: l=60мм; z=4; $D_0=84$ мм; $d_{\Pi}=14$ мм, [p]-допускаемое давление для резиновых втулок [p]=2 МПа.

Проверочный расчет пальцев на изгиб (17.3):

$$\sigma_u = \frac{T_p l_n}{0.1 d_n^3 z} = \frac{34.1 \cdot 10^3}{0.1 \cdot 14^3 \cdot 4} = 31.1 \le [\sigma_u],$$

где $[\sigma_{\rm u}]$ – допускаемое напряжение изгиба, $[\sigma_{\rm u}]$ =60...80МПа; $l_{\rm n}$ – длина пальцев.

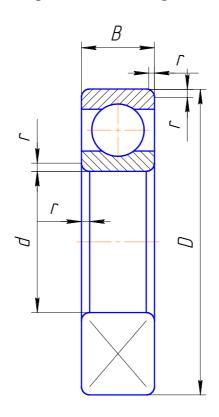
Список литературы.


- **1. Ерохин, М.Н.** Детали машин и основы конструирования : [учебник по агроинженерным специальностям / М. Н. Ерохин, С. П. Казанцев, А. В. Карп и др.] ; под ред. М. Н. Ерохина ; Ассоц. "Агрообразование". 2-е изд., перераб. и доп. Москва : КолосС, 2011. 511, [1] с. : ил. ; 25 см. (Учебники и учебные пособия для студентов высших учебных заведений). Предм. указ.: с. 508. Библиогр.: с. 507. ISBN 978-5-9532-0822-2
- **2. Гуревич, Ю. Е.** Детали машин и основы конструирования : учебник для студ. вузов по напр. подг. "Конструкторско-технологическое обеспечение машиностроительных процессов и производств"; доп. УМО [Текст]/ Ю. Е. Гуревич, М. Г. Косов, А. Г. Схиртладзе. М. : Академия, 2012. 592 с. : ил. (Высшее проф. образование. Машиностроение) (Бакалавриат). ISBN 978-5-7695-6669-1:УДК 621.8;
- **3. Чернавский, С.А.** Проектирование механических передач: Учебное пособие. [Электронный ресурс] / С.А. Чернавский, Г.А. Снесарев, Б.С. Козинцов. 7 изд., перераб. и доп. М.: НИЦ Инфра-М, 2013. 536 с., ISBN 978-5-16-004470-5. Режим доступа: http://znanium.com/catalog.php?bookinfo=368442 Загл. с экрана.
- **4. Павлов, П.И.** Детали машин. Валы и оси [Текст]: учеб.пособие / П. И. Павлов, В. В. Криловецкий, А. Н. Салихов. Саратов: ФГОУ ВПО "Саратовский ГАУ", 2010. 154 с. ISBN 978-5-9999-0653-3
- **5. Соколовская, В.П.** Техническая механика. Детали машин. Курсовое проектирование [Электронный ресурс]: пособие / В.П. Соколовская. Минск: Выш. шк., 2010. 103 с.: ил. ISBN 978-985-06-1810-8. Режим доступа: http://znanium.com/catalog.php?bookinfo=506828 Загл. с экрана.
- **6. Андреев, В.И.** Детали машин и основы конструирования. Курсовое проектирование. [Электронный ресурс] / В.И. Андреев, И.В. Павлова. Электрон. дан. СПб.: Лань, 2013. 352 с. Режим доступа: http://e.lanbook.com/book/12953 Загл. с экрана.
- **7. Авлукова, Ю.Ф.** Основы автоматизированного проектирования [Электронный ресурс]: учеб. пособие / Ю.Ф. Авлукова. Минск: Выш. шк., 2013. 217 с.: ил. ISBN 978-985-06-2316-4. Режим доступа: http://znanium.com/catalog.php?bookinfo=509235 Загл. с экрана.
- **8. Ерохин, М.Н.** Подъемно-транспортные машины [Текст] : учебник для студентов вузов, обучающихся по направлению "Агроинженерия" : допущено МСХ РФ / [М. Н. Ерохин и др.] ; под ред. М. Н. Ерохина, С. П. Казанцева ; Ассоциация "АГРООБРАЗОВАНИЕ". М. : КолосС, 2010. 336 с. (Учебники и учеб пособия для студентов высш. учеб. заведений). ISBN 978-5-9532-0625-9

- **9. Чернилевский, С.А.** Курсовое проектирование деталей машин: учебное пособие для учащихся машиностр. спец. ср. ТУЗов; доп. МО [Текст]/ ред.: С. А. Чернавский, Б. С. Козинцов. 3-е изд., перераб. и доп. М.: Инфра-М, 2013. 414 с.: ил. (Среднее проф. образование). ISBN 978-5-16-004336-4: УДК 621.8;
- **10.** Олофинская, В.П. Детали машин. Краткий курс, практические занятия и тестовые задания: учебное пособие для студентов образовательных учреждений среднего профессионального образования / В. П. Олофинская. 4е изд., испр. и доп. М.: Форум, ИнфраМ, 2014. 232с. (Профессиональное образование). ISBN 978-5-91134-918-9 (Форум). ISBN 978-5-16-009986-6 (ИнфраМ)
- **11. Анурьев В. И.** Справочник конструктора-машиностроителя: в 3 т. / В. И. Анурьев; под ред. И. Н. Жестковой. 8-е изд., перераб. и доп. М.: Машиностроение, 2001.
- **12. Детали машин.** Проектирование приводов технологического оборудования Чернилевский Д.В. М.:Машиностроение, 2004.
- **13. Конструирование узлов и деталей машин**: Учеб. пособие для студ. техн. спец. вузов /П.Ф. Дунаев, О.П. Леликов 8-е изд., перераб. И доп. М.: Издательский центр «Академия», 2003.

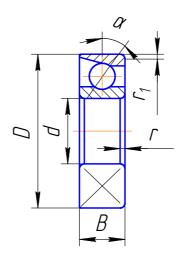
приложения

Приложение 1

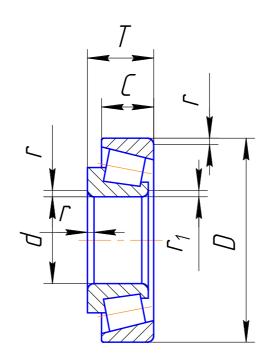

Электродвигатели серии 4A. Исполнение закрытое обдуваемое (по ГОСТ 19523-81)

Типо-	Габаритные			У	Установочные и присоединительные									
	pa	змеры, і	MM			размері	Ы, MM							
размер	L	H	D	d_1	l_1	l_2	l_3	b	d					
4AA50	17	142	112	9	20	32	63	80	5,8					
4AA56	194	152	128	11	23	36	71	90	5,8					
4AA63	216	164	138	14	30	40	80	100	7					
4A71	285	201	170	19	40	45	90	112	7					
4A80A	300	218	186	22	50	50	100	125	10					
4A80B	320	218	186	22	50	50	100	125	10					
4A90L	350	243	208	24	50	56	125	140	10					
4A100S	365	265	235	28	60	63	132	160	12					
4A100L	395	280	235	28	60	63	140	160	12					
4A112M	452	310	260	32	80	70	140	190	12					
4A132S	480	350	302	38	80	89	178	216	12					
4A132M	530	350	302	38	80	89	178	216	12					
4A160S	624	430	358	42	110	108	178	254	15					
	624	430	358	48	110	108	178	254	15					
4A160M	667	430	358	42	110	108	210	254	15					
		430	358	48	110	108	210	254	15					
4A180S	662	470	410	48	110	121	203	279	15					
		470	410	55	110	121	241	279	15					
4A180M	702	470	410	48	110	121	241	279	15					
		470	410	55	110	121	241	279	15					
4A200M	760	535	450	55	110	133	267	318	19					
	780	535	450	60	140	133	267	318	19					
4A200L	800	535	450	55	110	133	305	318	19					
	830	535	450	60	140	133	305	318	19					
4A225M	810	575	491	55	110	149	311	356	19					
	840	575	491	65	140	149	311	356	19					
4A250S	915	610	554	65, 75	140	168	311	406	19					
4A250M	955	610	554	65, 75	140	168	349	406	24					

Приложение 2


Шарикоподшипники радиальные однорядные по ГОСТ 8338-75

Условное обозначение		Размер	оы, мм		Грузоподъемность, кН			
подшипника	d	D	В	r	Динамическая С	Статическая C_0		
			Occ	бо легі	кая серия			
100	10	26	8	0,5	4,62	1,96		
101	12	28	8	0,5	5,07	2,24		
104	20	42	12	1	9,36	4,5		
105	25	47	12	1	11,2	5,6		
106	30	55	13	1,5	13,3	6,8		
107	35	62	14	1,5	15,9	8,5		
108	40	68	15	1,5	16,8	9,3		
109	45	75	16	1,5	21,2	12,2		
110	50	80	16	1,5	21,6	13,2		
111	55	90	18	2	28,1	17,0		
112	60	95	18	2	29,6	18,3		
113	65	100	18	2	30,7	19,6		
114	70	110	20	2	37,7	24,5		
115	75	115	20	2	39,7	26,0		
116	90	125	22	2	47,7	31,5		
117	85	130	22	2	49,4	33,5		
118	90	140	24	2,5	57,2	39,0		
119	95	145	24	2,5	60,5	41,5		
120	100	150	24	2,5	60,5	41,5		


Легкая серия											
200	10	30	9	1	5,9	2,65					
201	12	32	10	1	6,89	3,1					
202	15	35	11	1	7,8	3,55					
203	17	40	12	1	9,56	4,5					
204	20	47	14	1,5	12,7	6,2					
205	25	52	15	1,5	14,0	6,95					
206	30	62	16	1,5	19,5	10,0					
207	35	72	17	2	25,5	13,7					
208	40	80	18	2	32,0	17,8					
209	45	85	19	2	32,2	18,6					
210	50	90	20	2	35,1	19,8					
211	55	100	21	2,5	43,6	25,0					
212	60	110	22	2,5	52,0	31,0					
213	65	120	23	2,5	56,0	34,0					
214	70	125	24	2,5	61,8	37,5					
215	75	130	25	2,5	66,3	41,0					
216	80	140	26	3	70,2	45,0					
217	85	150	28	3	89,5	53,0					
218	90	160	30	3	95,6	62,0					
219	95	170	32	3,5	108	69,5					
220	100	180	34	3,5	124	79,0					
				Средняя		,.					
300	10	35	11	1	8,06	3,75					
301	12	37	12	1,5	9,75	4,65					
302	15	42	13	1,5	11,4	5,4					
303	17	47	14	1,5	13,5	6,65					
304	20	52	15	2	15,9	7,8					
305	25	62	17	2	22,5	11,4					
306	30	72	19	2	29,1	14,6					
307	35	80	21	2,5	33,2	18,0					
308	40	90	23	2,5	41,0	22,4					
309	45	100	25	2,5	52,7	30,0					
310	50	100	27	3	61,8	36,0					
311	55	120	29	3	71,5	41,5					
312	60	130	31	3,5	81,9	48,0					
313	65	140	33	3,5	92,3	56,0					
314	70	150	35	3,5	104	63,0					
315	75	160	37	3,5	112	72,5					
316	80	170	39	3,5	124	80,0					
317	85	180	41	4	133	90,0					
318	90	190	43	4	143	99,0					
319	95	200	45	4	153	110					
320	100	215	47	4	174	132					

Шарикоподшипники радиально-упорные однорядные ГОСТ 831-75

обозначение подшинтика Размеры, мм Динамитеская типа Сотипа Со	Услов	вное						Грузоподъемность, кН			
Ca=12° Ca=26° d D B r r_1 36000 46000 36000 46000	обознач	чение		Pa	змеры,	MM		Динамическая		Статическая	
36202K6 46202 15 35 11 1 0,5 6,0 8,52 3,75 3,65 36203K6 - 17 40 12 1 0,5 9,2 - 5,75 - 36204K6 46204 20 47 14 1,5 0,8 11,9 14,8 7,45 7,64 36205K6 46205 25 52 15 1,5 0,8 12,4 15,7 8,00 8,34 36205K6 46206 30 62 16 1,5 0,8 16,3 21,9 12,0 12,0 36207K6 46207 35 72 17 2 1 20,0 29,0 15,3 16,4 36205K6 46208 40 80 18 2 1 27,0 36,8 20,1 21,4 36209K6 46209 45 85 19 2 1 32,0 38,7 25,5 23,1 36210K6 46210 50 90 20 2 1 35,5 40,6 28,5 24,9 36211K6 46211 55 100 21 2,5 1,2 41,5 50,3 34,5 31,5 36212K6 46212 60 110 22 2,5 1,2 41,5 50,3 34,5 31,5 36213K6 46213 65 120 23 2,5 1,2 - 69,4 - 45,9 36215K6 46214 70 125 24 2,5 1,2 60,0 - 52,0 - 36215K6 46216 80 140 26 3 1,5 73,5 87,9 65,0 60,0 36217K6 46217 85 150 28 3 1,5 81,5 94,4 76,5 65,1 36218K6 46218 90 160 30 3 1,5 90,0 111,0 85,0 76,2 36220K6 46200 100 180 34 3,5 2 - 148,0 - 107,0	подшиг	тника						ТИП	a C	тип	a C_0
36202К6 46202 15 35 11 1 0,5 6,0 8,52 3,75 3,65 36203К6 - 17 40 12 1 0,5 9,2 - 5,75 - 36204К6 46204 20 47 14 1,5 0,8 11,9 14,8 7,45 7,64 36205К6 46205 25 52 15 1,5 0,8 12,4 15,7 8,00 8,34 36207К6 46207 35 72 17 2 1 20,0 29,0 15,3 16,4 36208К6 46208 40 80 18 2 1 27,0 36,8 20,1 21,4 36208К6 46209 45 85 19 2 1 32,5 40,6 28,5 23,1 36218К6 46210 50 90 20 2 1 35,5 40,6 28,5 23,1 <t< td=""><td>α=12°</td><td>α=26°</td><td>d</td><td>D</td><td>В</td><td>r</td><td>r_1</td><td colspan="2">36000 46000</td><td>36000</td><td>46000</td></t<>	α=12°	α=26°	d	D	В	r	r_1	36000 46000		36000	46000
36202К6 46202 15 35 11 1 0,5 6,0 8,52 3,75 3,65 36203К6 - 17 40 12 1 0,5 9,2 - 5,75 - 36204К6 46204 20 47 14 1,5 0,8 11,9 14,8 7,45 7,64 36205К6 46205 25 52 15 1,5 0,8 12,4 15,7 8,00 8,34 36207К6 46207 35 72 17 2 1 20,0 29,0 15,3 16,4 36208К6 46208 40 80 18 2 1 27,0 36,8 20,1 21,4 36208К6 46209 45 85 19 2 1 32,5 40,6 28,5 23,1 36218К6 46210 50 90 20 2 1 35,5 40,6 28,5 23,1 <t< td=""><td></td><td>•</td><td></td><td>•</td><td>J</td><td>Тегкая с</td><td>ерия</td><td>•</td><td></td><td>•</td><td></td></t<>		•		•	J	Тегкая с	ерия	•		•	
36204К6 46204 20 47 14 1,5 0,8 11,9 14,8 7,45 7,64 36205К6 46205 25 52 15 1,5 0,8 12,4 15,7 8,00 8,34 36206К6 46206 30 62 16 1,5 0,8 16,3 21,9 12,0 12,0 36207К6 46207 35 72 17 2 1 20,0 29,0 15,3 16,4 36208К6 46208 40 80 18 2 1 27,0 36,8 20,1 21,4 36208К6 46209 45 85 19 2 1 32,0 38,7 25,5 23,1 36210K6 46210 50 90 20 2 1 35,5 40,6 28,5 24,9 36212K6 46212 60 110 22 2,5 1,2 41,5 50,3 34,5 31,5	36202К6	46202	15	35				6,0	8,52	3,75	3,65
36205К6 46205 25 52 15 1,5 0,8 12,4 15,7 8,00 8,34 36206К6 46206 30 62 16 1,5 0,8 16,3 21,9 12,0 12,0 36207К6 46207 35 72 17 2 1 20,0 29,0 15,3 16,4 36208К6 46208 40 80 18 2 1 27,0 36,8 20,1 21,4 36209К6 46209 45 85 19 2 1 32,0 38,7 25,5 23,1 36210К6 46210 50 90 20 2 1 35,5 40,6 28,5 24,9 36211К6 46211 55 100 21 2,5 1,2 41,5 50,3 34,5 31,5 36212К6 46212 60 110 22 2,5 1,2 50,0 60,8 42,5 38,8 36213К6 46213 65 120 23 2,5 1,2 50,0 60,8 42,5 38,8 36213К6 46213 65 120 23 2,5 1,2 - 69,4 - 45,9 36214Κ6 46214 70 125 24 2,5 1,2 60,0 - 52,0 - 36215Κ6 46216 80 140 26 3 1,5 73,5 87,9 65,0 60,0 36217Κ6 64217 85 150 28 3 1,5 73,5 87,9 65,0 60,0 36217Κ6 64217 85 150 28 3 1,5 73,5 87,9 65,0 60,0 36217Κ6 64217 85 150 28 3 1,5 73,5 87,9 65,0 60,0 36217Κ6 64217 85 150 28 3 1,5 73,5 87,9 65,0 60,0 36217Κ6 64217 85 150 28 3 1,5 73,5 87,9 65,0 60,0 36217Κ6 64217 85 150 28 3 1,5 73,5 87,9 65,0 60,0 36217Κ6 64217 85 150 28 3 1,5 73,5 87,9 65,0 60,0 36217Κ6 64217 85 150 28 3 1,5 73,5 87,9 65,0 60,0 36217Κ6 64217 85 150 28 3 1,5 73,5 87,9 65,0 60,0 76,2 36200 4620 100 180 34 3,5 2 - 148,0 - 107,0 76,2 36200 4620 100 180 34 3,5 2 - 148,0 - 107,0 76,2 36200 4620 100 180 34 3,5 2 - 148,0 - 107,0 76,2 36200 4620 100 127 2,5 1,2 50,0 30,1 30,1 30 30,1 30 3,5 2,0 113,0 75,0 30,1 30,1 30 30 3,5 2,0 113,0 75,0 30,1 30 30 3,5 2,0 113,0 75,0 65,3 30,1 30 46318 90 190 43 40,0 2,0 165,0 122,0	36203К6	-	17	40	12	1	0,5	9,2	-	5,75	-
36206K6 46206 30 62 16 1,5 0,8 16,3 21,9 12,0 12,0 36207K6 46207 35 72 17 2 1 20,0 29,0 15,3 16,4 36208K6 46208 40 80 18 2 1 27,0 36,8 20,1 21,4 36209K6 46209 45 85 19 2 1 32,0 38,7 25,5 23,1 36210K6 46210 50 90 20 2 1 35,5 40,6 28,5 24,9 36211K6 46211 55 100 21 2,5 1,2 41,5 50,3 34,5 31,5 36212K6 46212 60 110 22 2,5 1,2 50,0 60,8 42,5 38,8 36213K6 46213 65 120 23 2,5 1,2 50,0 60,8 42,5 38,8 36213K6 46213 65 120 23 2,5 1,2 50,0 60,8 42,5 38,8 36214K6 46214 70 125 24 2,5 1,2 60,0 - 52,0 - 36215K6 46216 80 140 26 3 1,5 73,5 87,9 65,0 60,0 36217K6 46218 80 140 26 3 1,5 73,5 87,9 65,0 60,0 36217K6 46218 90 160 30 3 1,5 73,5 87,9 65,0 60,0 36217K6 46218 90 160 30 3 1,5 73,5 81,5 94,4 76,5 65,1 36218K6 46218 90 160 30 3 1,5 73,5 81,5 94,4 76,5 65,1 36218K6 46220 100 180 34 3,5 2 - 148,0 - 107,0 170	36204К6	46204	20	47	14	1,5	0,8	11,9	14,8	7,45	7,64
36207К6 46207 35 72 17 2 1 20,0 29,0 15,3 16,4 36208К6 46208 40 80 18 2 1 27,0 36,8 20,1 21,4 36209К6 46209 45 85 19 2 1 32,0 38,7 25,5 23,1 36210К6 46210 50 90 20 2 1 35,5 40,6 28,5 24,9 36211К6 46211 55 100 21 2,5 1,2 41,5 50,3 34,5 31,5 36212К6 46212 60 110 22 2,5 1,2 50,0 60,8 42,5 38,8 36213К6 46213 65 120 23 2,5 1,2 50,0 60,8 42,5 38,8 36213К6 46214 70 125 24 2,5 1,2 60,0 - 52,0 - 36215К6 46215 75 130 25 2,5 1,2 73,5 78,4 65,5 53,8 36216К6 46216 80 140 26 3 1,5 73,5 87,9 65,0 60,0 36217К6 64217 85 150 28 3 1,5 73,5 87,9 65,0 60,0 36217К6 64217 85 150 28 3 1,5 73,5 87,9 65,0 60,0 36217К6 46218 90 160 30 3 1,5 73,5 87,9 65,0 60,0 36217К6 46218 90 160 30 3 1,5 73,5 87,9 65,0 60,0 36217К6 46218 90 160 30 3 1,5 90,0 111,0 85,0 76,2 36220K6 46220 100 180 34 3,5 2 - 148,0 - 107,0 76,2 36220K6 46200 100 180 34 3,5 2 - 148,0 - 107,0 76,2 3620K6 46308 40 90 23 2,5 1,2 50,0 30,1 30,1 - 46309 45 100 25 2,5 1,2 50,0 30,1 30,1 - 46309 45 100 25 2,5 1,2 50,0 30,1 30,1 - 46310 50 110 27 3,0 1,5 71,8 44,0 - 46312 60 130 30 3,5 2,0 113,0 75,0 - 46314 70 150 35 3,5 2,0 113,0 75,0 - 46314 70 150 35 3,5 2,0 127,0 85,3 - 46318 90 190 43 4,0 2,0 165,0 122,0	36205К6	46205	25	52	15	1,5	0,8	12,4	15,7	8,00	8,34
36208К6 46208 40 80 18 2 1 27,0 36,8 20,1 21,4 36209К6 46209 45 85 19 2 1 32,0 38,7 25,5 23,1 36210К6 46210 50 90 20 2 1 35,5 40,6 28,5 24,9 36211К6 46211 55 100 21 2,5 1,2 41,5 50,3 34,5 31,5 36212К6 46212 60 110 22 2,5 1,2 50,0 60,8 42,5 38,8 36214К6 46213 65 120 23 2,5 1,2 - 69,4 - 45,9 36214К6 46215 75 130 25 2,5 1,2 73,5 78,4 65,5 53,8 36215К6 46216 80 140 26 3 1,5 73,5 87,9 65,0 60,0	36206К6	46206	30	62	16	1,5	0,8	16,3	21,9	12,0	12,0
36208K6 46208 40 80 18 2 1 27,0 36,8 20,1 21,4 36209K6 46209 45 85 19 2 1 32,0 38,7 25,5 23,1 36210K6 46210 50 90 20 2 1 35,5 40,6 28,5 24,9 36211K6 46211 55 100 21 2,5 1,2 41,5 50,3 34,5 31,5 36212K6 46212 60 110 22 2,5 1,2 50,0 60,8 42,5 38,8 36213K6 46213 65 120 23 2,5 1,2 - 69,4 - 45,9 36214K6 46214 70 125 24 2,5 1,2 60,0 - 52,0 - 36215K6 46215 75 130 25 2,5 1,2 73,5 78,4 65,5 53,8 36216K6 46215 75 130 25 2,5 1,2 73,5 78,4 65,5 53,8 36216K6 46216 80 140 26 3 1,5 73,5 87,9 65,0 60,0 36217K6 64217 85 150 28 3 1,5 81,5 94,4 76,5 65,1 36218K6 46218 90 160 30 3 1,5 81,5 94,4 76,5 65,1 36218K6 46220 100 180 34 3,5 2 - 148,0 - 107,0 26,2 36220K6 46200 100 180 34 3,5 2 - 148,0 - 107,0 26,2 46308 40 90 23 2,5 1,2 50,0 30,1 - 46309 45 100 25 2,5 1,2 50,0 30,1 - 46310 50 110 27 3,0 1,5 71,8 44,0 - 46312 60 130 30 3,5 2,0 113,0 75,0 - 46314 70 150 35 3,5 2,0 127,0 85,3 - 46318 90 190 43 40,0 2,0 165,0 122,0	36207К6	46207	35	72	17	2	1	20,0	29,0	15,3	16,4
36210К6 46210 50 90 20 2 1 35,5 40,6 28,5 24,9 36211К6 46211 55 100 21 2,5 1,2 41,5 50,3 34,5 31,5 36212К6 46212 60 110 22 2,5 1,2 50,0 60,8 42,5 38,8 36213К6 46213 65 120 23 2,5 1,2 - 69,4 - 45,9 36214К6 46214 70 125 24 2,5 1,2 60,0 - 52,0 - 36215К6 46215 75 130 25 2,5 1,2 73,5 78,4 65,5 53,8 36216К6 46216 80 140 26 3 1,5 73,5 87,9 65,0 60,0 36218К6 46218 90 160 30 3 1,5 90,0 111,0 85,0 76,2	36208К6	46208	40	80	18	2	1	27,0	36,8	20,1	21,4
36210К6 46210 50 90 20 2 1 35,5 40,6 28,5 24,9 36211К6 46211 55 100 21 2,5 1,2 41,5 50,3 34,5 31,5 36212К6 46212 60 110 22 2,5 1,2 50,0 60,8 42,5 38,8 36213К6 46213 65 120 23 2,5 1,2 - 69,4 - 45,9 36214К6 46214 70 125 24 2,5 1,2 60,0 - 52,0 - 36215К6 46215 75 130 25 2,5 1,2 73,5 78,4 65,5 53,8 36216К6 46216 80 140 26 3 1,5 73,5 87,9 65,0 60,0 36218К6 46218 90 160 30 3 1,5 90,0 111,0 85,0 76,2	36209К6	46209	45	85	19	2	1	32,0	38,7	25,5	23,1
36212К6 46212 60 110 22 2,5 1,2 50,0 60,8 42,5 38,8 36213К6 46213 65 120 23 2,5 1,2 - 69,4 - 45,9 36214К6 46214 70 125 24 2,5 1,2 60,0 - 52,0 - 36215К6 46215 75 130 25 2,5 1,2 73,5 78,4 65,5 53,8 36216К6 46216 80 140 26 3 1,5 73,5 87,9 65,0 60,0 36217К6 64217 85 150 28 3 1,5 81,5 94,4 76,5 65,1 36218К6 46218 90 160 30 3 1,5 90,0 111,0 85,0 76,2 36220К6 46220 100 180 34 3,5 2 - 148,0 - 107,0 - 46306 30 72 19 2,0 1,0 32,6 <t< td=""><td>36210К6</td><td>46210</td><td>50</td><td>90</td><td>20</td><td>2</td><td>1</td><td>35,5</td><td>40,6</td><td>28,5</td><td>24,9</td></t<>	36210К6	46210	50	90	20	2	1	35,5	40,6	28,5	24,9
36213К6 46213 65 120 23 2,5 1,2 - 69,4 - 45,9 36214К6 46214 70 125 24 2,5 1,2 60,0 - 52,0 - 36215К6 46215 75 130 25 2,5 1,2 73,5 78,4 65,5 53,8 36216К6 46216 80 140 26 3 1,5 73,5 87,9 65,0 60,0 36217К6 64217 85 150 28 3 1,5 81,5 94,4 76,5 65,1 36218К6 46218 90 160 30 3 1,5 90,0 111,0 85,0 76,2 36220К6 46220 100 180 34 3,5 2 - 148,0 - 107,0 - 46305 25 62 17 2,0 1,0 32,6 18,3 - 46307 35 80 21 2,5 1,2 42,6 24,7	36211K6	46211	55	100	21	2,5	1,2	41,5	41,5 50,3		31,5
36213К6 46213 65 120 23 2,5 1,2 - 69,4 - 45,9 36214К6 46214 70 125 24 2,5 1,2 60,0 - 52,0 - 36215К6 46215 75 130 25 2,5 1,2 73,5 78,4 65,5 53,8 36216К6 46216 80 140 26 3 1,5 73,5 87,9 65,0 60,0 36217К6 64217 85 150 28 3 1,5 81,5 94,4 76,5 65,1 36218К6 46218 90 160 30 3 1,5 90,0 111,0 85,0 76,2 36220К6 46220 100 180 34 3,5 2 - 148,0 - 107,0 Средняя серия - 46305 25 62 17 2,0 1,0 32,6 18,3 - 46307 35 80 21 2,5 1,2 42,6 24,7 - 46308 40 90 23 2,5 1,2 50,0 30,1 - 46310	36212К6	46212	60	110	22	2,5	1,2	50,0	60,8	42,5	38,8
36215К6 46215 75 130 25 2,5 1,2 73,5 78,4 65,5 53,8 36216К6 46216 80 140 26 3 1,5 73,5 87,9 65,0 60,0 36217К6 64217 85 150 28 3 1,5 81,5 94,4 76,5 65,1 36218К6 46218 90 160 30 3 1,5 90,0 111,0 85,0 76,2 36220К6 46220 100 180 34 3,5 2 - 148,0 - 107,0 Средняя серия - 46305 25 62 17 2,0 1,0 26,9 14,6 - 46306 30 72 19 2,0 1,0 32,6 18,3 - 46307 35 80 21 2,5 1,2 42,6 24,7 - 46308 40 90 23 2,5 1,2 50,0 30,1 - 46310 50 110 27 3,0 1,5 71,8 44,0 - 46312 60 130 30 3,5 <t< td=""><td>36213К6</td><td>46213</td><td>65</td><td>120</td><td>23</td><td>2,5</td><td></td><td>-</td><td>69,4</td><td>-</td><td>45,9</td></t<>	36213К6	46213	65	120	23	2,5		-	69,4	-	45,9
36216К6 46216 80 140 26 3 1,5 73,5 87,9 65,0 60,0 36217К6 64217 85 150 28 3 1,5 81,5 94,4 76,5 65,1 36218К6 46218 90 160 30 3 1,5 90,0 111,0 85,0 76,2 36220К6 46220 100 180 34 3,5 2 - 148,0 - 107,0 Средняя серия - 46305 25 62 17 2,0 1,0 26,9 14,6 18,3 - 46306 30 72 19 2,0 1,0 32,6 18,3 - 46307 35 80 21 2,5 1,2 42,6 24,7 - 46308 40 90 23 2,5 1,2 50,0 30,1 - 46310 50 110 27 3,0 1,5 71,8 44,0 - 46312 60 <t< td=""><td>36214К6</td><td>46214</td><td>70</td><td>125</td><td>24</td><td>2,5</td><td>1,2</td><td>60,0</td><td>-</td><td>52,0</td><td>-</td></t<>	36214К6	46214	70	125	24	2,5	1,2	60,0	-	52,0	-
36217К6 64217 85 150 28 3 1,5 81,5 94,4 76,5 65,1 36218К6 46218 90 160 30 3 1,5 90,0 111,0 85,0 76,2 36220К6 46220 100 180 34 3,5 2 - 148,0 - 107,0 Средняя серия - 46305 25 62 17 2,0 1,0 26,9 14,6 - 46306 30 72 19 2,0 1,0 32,6 18,3 - 46307 35 80 21 2,5 1,2 42,6 24,7 - 46308 40 90 23 2,5 1,2 50,0 30,1 - 46309 45 100 25 2,5 1,2 61,4 37,0 - 46310 50 110 27 3,0 1,5 71,8	36215К6					2,5		73,5	78,4	65,5	53,8
36218К6 46218 90 160 30 3 1,5 90,0 111,0 85,0 76,2 36220К6 46220 100 180 34 3,5 2 - 148,0 - 107,0 Средняя серия - 46305 25 62 17 2,0 1,0 26,9 14,6 - 46306 30 72 19 2,0 1,0 32,6 18,3 - 46307 35 80 21 2,5 1,2 42,6 24,7 - 46308 40 90 23 2,5 1,2 50,0 30,1 - 46309 45 100 25 2,5 1,2 61,4 37,0 - 46310 50 110 27 3,0 1,5 71,8 44,0 - 46312 60 130 30 3,5 2,0 100,0 65,3 - 46314 70 150 35 3,5 2,0 127,0 85,3	36216К6			140		3		73,5	87,9	65,0	
36220К6 46220 100 180 34 3,5 2 - 148,0 - 107,0 Средняя серия - 46305 25 62 17 2,0 1,0 26,9 14,6 - 46306 30 72 19 2,0 1,0 32,6 18,3 - 46307 35 80 21 2,5 1,2 42,6 24,7 - 46308 40 90 23 2,5 1,2 50,0 30,1 - 46309 45 100 25 2,5 1,2 61,4 37,0 - 46310 50 110 27 3,0 1,5 71,8 44,0 - 46312 60 130 30 3,5 2,0 100,0 65,3 - 46314 70 150 35 3,5 2,0 127,0 85,3 - 46318 90<	36217К6					3		81,5	94,4	76,5	65,1
Средняя серия - 46305 25 62 17 2,0 1,0 26,9 14,6 - 46306 30 72 19 2,0 1,0 32,6 18,3 - 46307 35 80 21 2,5 1,2 42,6 24,7 - 46308 40 90 23 2,5 1,2 50,0 30,1 - 46309 45 100 25 2,5 1,2 61,4 37,0 - 46310 50 110 27 3,0 1,5 71,8 44,0 - 46312 60 130 30 3,5 2,0 100,0 65,3 - 46313 65 140 33 3,5 2,0 113,0 75,0 - 46314 70 150 35 3,5 2,0 127,0 85,3 - 46318 90 190 43 <td>36218К6</td> <td>46218</td> <td>90</td> <td>160</td> <td>30</td> <td>3</td> <td>1,5</td> <td>90,0</td> <td>111,0</td> <td>85,0</td> <td>76,2</td>	36218К6	46218	90	160	30	3	1,5	90,0	111,0	85,0	76,2
- 46305 25 62 17 2,0 1,0 26,9 14,6 - 46306 30 72 19 2,0 1,0 32,6 18,3 - 46307 35 80 21 2,5 1,2 42,6 24,7 - 46308 40 90 23 2,5 1,2 50,0 30,1 - 46309 45 100 25 2,5 1,2 61,4 37,0 - 46310 50 110 27 3,0 1,5 71,8 44,0 - 46312 60 130 30 3,5 2,0 100,0 65,3 - 46313 65 140 33 3,5 2,0 113,0 75,0 - 46314 70 150 35 3,5 2,0 127,0 85,3 - 46318 90 190 43 4,0 2,0 165,0 122,0	36220К6	46220	100	180	34	3,5	2	-	148,0	-	107,0
- 46306 30 72 19 2,0 1,0 32,6 18,3 - 46307 35 80 21 2,5 1,2 42,6 24,7 - 46308 40 90 23 2,5 1,2 50,0 30,1 - 46309 45 100 25 2,5 1,2 61,4 37,0 - 46310 50 110 27 3,0 1,5 71,8 44,0 - 46312 60 130 30 3,5 2,0 100,0 65,3 - 46313 65 140 33 3,5 2,0 113,0 75,0 - 46314 70 150 35 3,5 2,0 127,0 85,3 - 46318 90 190 43 4,0 2,0 165,0 122,0											
- 46307 35 80 21 2,5 1,2 42,6 24,7 - 46308 40 90 23 2,5 1,2 50,0 30,1 - 46309 45 100 25 2,5 1,2 61,4 37,0 - 46310 50 110 27 3,0 1,5 71,8 44,0 - 46312 60 130 30 3,5 2,0 100,0 65,3 - 46313 65 140 33 3,5 2,0 113,0 75,0 - 46314 70 150 35 3,5 2,0 127,0 85,3 - 46318 90 190 43 4,0 2,0 165,0 122,0	_										
- 46308 40 90 23 2,5 1,2 50,0 30,1 - 46309 45 100 25 2,5 1,2 61,4 37,0 - 46310 50 110 27 3,0 1,5 71,8 44,0 - 46312 60 130 30 3,5 2,0 100,0 65,3 - 46313 65 140 33 3,5 2,0 113,0 75,0 - 46314 70 150 35 3,5 2,0 127,0 85,3 - 46318 90 190 43 4,0 2,0 165,0 122,0	_										
- 46309 45 100 25 2,5 1,2 61,4 37,0 - 46310 50 110 27 3,0 1,5 71,8 44,0 - 46312 60 130 30 3,5 2,0 100,0 65,3 - 46313 65 140 33 3,5 2,0 113,0 75,0 - 46314 70 150 35 3,5 2,0 127,0 85,3 - 46318 90 190 43 4,0 2,0 165,0 122,0	_										
- 46310 50 110 27 3,0 1,5 71,8 44,0 - 46312 60 130 30 3,5 2,0 100,0 65,3 - 46313 65 140 33 3,5 2,0 113,0 75,0 - 46314 70 150 35 3,5 2,0 127,0 85,3 - 46318 90 190 43 4,0 2,0 165,0 122,0	_						1,2				
- 46312 60 130 30 3,5 2,0 100,0 65,3 - 46313 65 140 33 3,5 2,0 113,0 75,0 - 46314 70 150 35 3,5 2,0 127,0 85,3 - 46318 90 190 43 4,0 2,0 165,0 122,0	_										
- 46313 65 140 33 3,5 2,0 113,0 75,0 - 46314 70 150 35 3,5 2,0 127,0 85,3 - 46318 90 190 43 4,0 2,0 165,0 122,0	_										
- 46314 70 150 35 3,5 2,0 127,0 85,3 - 46318 90 190 43 4,0 2,0 165,0 122,0	_										
- 46318 90 190 43 4,0 2,0 165,0 122,0	_							113,0			
	_										
- 46320 100 215 47 4,0 2,0 213,0 177,0	_					4,0	2,0			12:	2,0
	_	46320	100	215	47	4,0	2,0	21	3,0	17	7,0

Роликоподшипники конические однорядные ГОСТ 27365-87

Условное обозначение			Размо	еры, м	мм	Грузо емнос ди-	подъ- ть, кН ста-	при	Ракторі іведені агрузк	ной		
подшипника	d	D	T	В	С	r	r_1	нами- чес- кая С	тиче- ская С ₀	e	Y	Y_0
Серия диаметров 2, серия ширин 0												
7203A	17	40	13,25	12	11	1,0	1,0	17,9	12,0	0,31	1,91	1,05
7204A	20	47	15,25	14	12	1,0	1,0	26,0	16,6	0,36	1,67	0,92
7205A	25	52	16,25	15	13	1,0	1,0	29,2	21,0	0,36	1,67	0,92
7206A	30	62	17,25	16	14	1,0	1,0	38,0	25,5	0,36	1,65	0,91
7207A	35	72	18,25	17	15	1,5	1,5	48,4	32,5	0,37	1,62	0,89
7208A	40	80	19,75	18	16	1,5	1,5	58,3	40,0	0,38	1,56	0,86
7209A	45	85	20,75	19	16	1,5	1,5	62,7	50,0	0,41	1,45	0,80
7210A	50	90	21,75	20	17	1,5	1,5	70,4	55,0	0,37	1,60	0,88
7211A	55	100	22,75	21	18	2,0	1,5	84,2	61,0	0,41	1,46	0,80
7213A	60	110	23,75	22	19	2,0	1,5	91,3	70,0	0,35	1,71	0,94
7212A	65	120	24,75	23	20	2,0	1,5	108,0	78,0	-	-	-
7214A	70	125	26,25	24	21	2,0	1,5	119,0	89,0	0,37	1,62	0,89
7215A	75	130	27,25	25	22	2,0	1,5	130,0	100,0	0,39	1,55	0,85
7216A	80	140	28,25	26	22	2,5	2,0	140,0	114,0	0,42	1,43	0,78
7217A	85	150	30,50	28	24	2,5	2,0	165,0	134,0	0,43	1,38	0,76
7218A	90	160	32,50	30	26	2,5	2,0	183,0	150,0	0,38	1,56	0,86
7219A	95	170	34,50	32	27	3,0	2,5	205,0	156,0	0,41	1,48	0,81
7220A	100	180	37,00	34	29	3,0	2,5	233,0	190,0	0,40	1,49	0,82

Серия диаметров 5, серия ширин 0												
7505A	25	52	19,25	18	16	1,0	1,0	34,1	25,0	-	-	_
7506A	30	62	21,25	20	17	1,0	1,0	47,3	37,0	0,37	1,65	0,90
7507A	35	72	24,25	23	19	1,5	1,5	61,6	45,0	0,35	1,73	0,95
7508A	40	80	24,75	23	19	1,5	1,5	70,4	50,0	0,38	1,58	0,87
7509A	45	85	24,75	23	19	1,5	1,5	74,8	60,0	0,42	1,44	0,80
7510A	50	90	24,75	23	19	1,5	1,5	76,5	64,0	0,42	1,43	0,78
7511A	55	100	26,75	25	21	2,0	1,5	99,0	80,0	0,36	1,67	0,92
7512A	60	110	29,75	28	24	2,0	1,5	120,0	100,0	0,39	1,53	0,84
7513A	65	120	32,75	31	27	2,0	1,5	142,0	120,0	0,37	1,62	0,89
7514A	70	125	33,25	31	27	2,0	1,5	147,0	118,0	0,39	1,55	0,85
7515A	75	130	33,25	31	27	2,0	1,5	157,0	130,0	0,41	1,48	0,81
7516A	80	140	35,25	33	28	2,5	2,0	176,0	155,0	0,40	1,49	0,82
7517A	85	150	38,50	36	30	2,5	2,0	201,0	180,0	0,39	1,55	0,85
7518A	90	160	42,50	40	34	2,5	2,0	238,0	193,0	0,39	1,55	0,85
7519A	95	170	45,50	43	37	3,0	2,5	264,0	220,0	0,38	1,56	0,86
7520A	100	180	49,00	46	39	3,0	2,5	297,0	280,0	0,40	1,49	0,82
								ирин 0				
7302A	15	42	14,25	13	11	1,0	1,0	21,2	12,7	-	-	-
7303A	17	47	15,25	14	12	1,0	1,0	26,0	16,0	-	-	-
7304A	20	52	16,25	15	13	1,5	1,5	31,9	20,0	0,30	2,03	1,11
7305A	25	62	18,25	17	15	1,5	1,5	41,8	28,0	0,36	1,66	0,92
7306A	30	72	20,75	19	16	1,5	1,5	52,8	39,0	0,34	1,78	0,98
7307A	35	80	22,75	21	18	2,0	1,5	68,2	50,0	0,32	1,88	1,03
7308A	40	90	25,25	23	20	2,0	1,5	80,9	56,0	0,28	2,16	1,19
7309A	45	100	27,25	25	22	2,0	1,5	101,0	72,0	0,29	2,09	1,15
7310A	50	110	29,25	27	23	2,5	2,0	117,0	90,0	0,31	1,94	1,06
7311A	55	120	31,50	29	25	2,5	2,0	134,0	110,0	0,33	1,80	0,99
7312A	60	130	33,50	31	26	3,0	2,5	161,0	120,0	0,30	1,97	1,08
7313A	65	140	36,00	33	28	3,0	2,5	183,0	150,0	0,30	1,97	1,08
7314A	70	150	38,00	35	30	3,0	2,5	209,0	170,0	0,31	1,94	1,06
7315A	75	160	40,00	37	31	3,0	2,5	229,0	185,0	0,33	1,83	1,01
7316A	80	170	42,50	39	33	3,0	2,5	255,0	190,0	-	_	-
7317A	85	180	44,50	41	34	4,0	3,0	286,0	216,0	0,31	1,91	1,05
7318A	90	190	46,50	43	36	4,0	3,0	308,0	236,0	0,32	1,88	1,03
7319A	95	200	49,50	45	38	4,0	3,0	341,0	265,0	-	-	-
7320A	100	215	51,50	47	39	4,0	3,0	380,0	290,0	0,31	1,88	1,03