Документ подписан простой электронной подписью Информация о владельце: ФИО: Соловьев Дмитрий Александрович Должност:: ректор МИНИСЕ БРСТВО СЕЛЬ СКОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ Дата подгисания: 18.04 должное учисания: 18.04 долж образовательное учреждение 528682d78e671e5 f735a12 высшего образования «Саратовский государственный аграрный университет имени Н. И. Вавидова» СОГЛАСОВАНО **УТВЕРЖДАЮ** Заведующий кафедрой Декан факультета /Трушкин В.А./ /Соловьев Д.А./ 2019 г. РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ) МОДЕЛИРОВАНИЕ ФИЗИЧЕСКИХ Дисциплина ПРОЦЕССОВ В ЭЛЕКТРОТЕХНОЛОГИЯХ 35.03.06 Агроинженерия Направление подготовки Направленность Электрооборудование и электротехнологии (профиль) Квалификация Бакалавр выпускника Нормативный срок 4 года обучения Форма обучения Очная Разработчик: доцент, Кочелаевская К.В.

Саратов 2019

1. Цели освоения дисциплины

Целью освоения дисциплины «Моделирование физических процессов в электротехнологиях» является формирование у обучающихся навыков анализа и расчета основных характеристик физических явлений, лежащих в основе различных электротехнологических процессов, а также использования результатов моделирования в профессиональной деятельности.

2. Место дисциплины в структуре ОПОП ВО

В соответствии с учебным планом по направлению подготовки 35.03.06 Агроинженерия направленность (профиль) «Электрооборудование и электротехнологии» дисциплина «Моделирование физических процессов в электротехнологиях» относится к дисциплинам факультативного цикла.

Для изучения данной дисциплины необходимы знания, умения и навыки, формируемые предшествующими дисциплинами: математика, физика, теплотехника, механика, электроника.

Дисциплина «Моделирование физических процессов в электротехнологиях» является базовой для выпускной квалификационной работы.

3. Перечень планируемых результатов обучения по дисциплине, соотнесенных с индикаторами достижения компетенций

Изучение данной дисциплины направлено на формирование у обучающихся компетенций, представленных в табл. 1

Таблица 1 Требования к результатам освоения дисциплины

No ′	Код	Содержание	Индикаторы		зучения учебной	
Π/	компе	компетенции	достижения	ooy	чающиеся должн	Ы.
П	тенци	(или ее части)	компетенций	знать	уметь	владеть
	И					
1	2	3	4	5	6	7
1	ОПК-	Способен	ОПК-1.12	основные	строить	основными
	1	решать	применять	законы	модели	методами
		типовые	теоретически	естественно	физических	моделиров
		задачи	е знания	научных	явлений,	ания
		профессионал	естественно-	дисциплин и	лежащих в	
		ьной	научных и	принципы	основе	
		деятельности	профессионал	передачи	передачи	
		на основе	ьных	электроэнер	электроэнерг	
		знаний	дисциплин для	гии по цепям	ии	
		основных	моделировани	c		
		законов	я процессов в	распределен		
		математичес	электротехно	ными		
		ких и	логиях	параметрам		
		естественны		u		
		х наук с				

	енением ррмацион		
но-	рмицион		
комм	уникацио		
нных			
техн	ологий		

4. Объём, структура и содержание дисциплины

Общая трудоемкость дисциплины составляет 1 зачетная единица, 36 часов.

Объем дисциплины

				ŀ	Соличес	тво ча	сов				
	D				в т.ч	н. по се	гмест	рам			
	Всего	1	2	3	4	5	6	7	8	9	10
Контактная работа – всего, в т.ч.:	20,1								20,1		
Аудиторная работа:	20								20		
лекции	0								0		
лабораторные	20								20		
практические	0								0		
Промежуточная аттестация	0,1								0,1		
Самостоятельная работа	15,9								15,9		
Форма итогового контроля	3								3		
Курсовой проект (работа)	X								X		

Таблица 3

Таблица 2

Структура и содержание дисциплины

		се Контактная работа в о		Самост оятель ная работа		троль аний		
№ п/п	Тема занятия. Содержание	Неделя сем	Вид занятия	Форма проведения	Количество Часов	Количество часов	Вид	Форма
1	2	3	4	5	6	7	8	9
	8	семес	тр					
1.	Изучение вынужденных колебаний в контуре. Найти собственную частоту ω_0 резонатора, считая, что его плоская часть является конденсатором, а цилиндрическая – индуктивностью.		ЛЗ	Т	2	2	ВК	ПО

2	Определение индуктивности							
	соленоида. Два длинных коаксиальных соленоида содержат n_1 и n_2 витков на единицу длины. Внутренний соленоид, имеющий площадь поперечного сечения S , заполнен магнетиком с проницаемостью μ . Найти взаимную индуктивность соленоидов в расчете на единицу их длины.	2	ЛЗ	Т	2	2	TK	УО
3	Изучение контактной разности потенциалов. Вдоль медного прямого проводника круглого сечения радиуса <i>R</i> течет ток <i>I</i> . Найти разность потенциалов между осью проводника и его поверхностью. Концентрация электронов проводимости у меди <i>n</i> .	3	ЛЗ	Т	2	2	ТК	УО
4	Определение индуктивности соленоида. Вычислить индуктивность единицы длины двухпроводной ленточной линии, если расстояние между лентами h значительно меньше их ширины b .	4	ЛЗ	Т	2	2	TK	УО
5	Изучение потенциалов. контактной определить определить внутреннюю возникающую при возникающую приведении в соприкосновение двух металлов с контентрациями свободных электронов n_1 и n_2 .	5	ЛЗ	Т	2	2	TK	УО
6	Изучение вынужденных колебаний в колебательном колебательном контуре. Найти отношение амплитудных значений магнитной и электрической энергии внутри плоского воздушного конденсатора, обкладки которого имеют форму дисков радиуса R Конденсатор подключен к переменному синусоизальному напряжению частоты ω	6	ЛЗ	T	2	2	TK	УО
7	Изучение магнитной составляющей Земли. Показать, что скорость возрастания энергии магнитного поля в соленоиде при медленном увеличении тока, протекающего по его обмотке, равна потоку вектора Пойтинга через его боковую поверхность.	7	ЛЗ	Т	2	2	ТК	УО
8	Изучение затухающих колебаний в контуре. Найти поток энергии через поперечное сечение длинного, прямого кабеля, с пренебрежимо малым активным сопротивлением, по которому энергия от источника	8	ЛЗ	Т	2	2	РК	ПО

	постоянного напряжения U передается к потребителю. Потребляемый ток I . Внешняя проводящая оболочка кабеля предполагается тонкостенной							
9	Изучение затухающих колебаний в контуре. Исходя из основных уравнений двухпроводной линии, показать, что напряжение и ток распространяются вдоль линии в виде волны со скоростью $v=1/\sqrt{LC}$, волновое сопротивление линии $\rho=\sqrt{L/C}$.	9	ЛЗ	Т	2	2	ТК	УО
10	Телеграфноеуравнение.Получитьтелеграфноеуравнение,предполагаяемкость C постояннойвдольдлиныволновода.Сопротивлениеисамоиндукцияединицыдлиныволновода R U соответственно.	10	ЛЗ	Т	2	2	TK	УО
11	Выходной контроль (зачет)				0.1	4	Вых.к	3 Tc
	го за семестр:				20,1	15,9		
Всег	о по дисциплине:				20,1	15,9		

Примечание:

Условные обозначения:

Виды контактной работы: ПЗ – лабораторное занятие.

Формы проведения занятий: Т - традиционная форма проведения.

Виды контроля: РК – рубежный контроль, ВК – входной контроль, ТК – текущий контроль,

ВыхК – выходной контроль.

Форма контроля: УО – устный опрос, Тс- тестирование, З – зачет.

5. Образовательные технологии

Организация занятий по дисциплине «Моделирование физических процессов в электротехнологиях»» проводится на лабораторных занятиях.

Реализация компетентностного подхода в рамках направления подготовки 35.03.06 Агроинженерия направленность (профиль) «Электрооборудование и электротехнологии» предусматривает использование в учебном процессе интерактивных активных форм проведения занятий В сочетании И внеаудиторной работой для формирования и развития профессиональных навыков обучающихся.

Целью лабораторных занятий является выработка навыков проведения эксперимента и выполнение расчетов физических параметров, характеризующих физические процессы, используемые в электротехнологиях. Данные занятия направлены на изучение обучающимися общих вопросов электродинамики, а также некоторых эффектов и явлений, знание которых необходимо для понимания основ работы конкретных электротехнических устройств: уравнений Максвелла, теории постоянного магнитного поля, эффекта Холла, явления

электромагнитной индукции. Также на занятиях изучаются конкретные, широко применяемые на практике, устройства: резонаторы, магнетроны, сглаживающие фильтры, двухпроводные ленточные линии, коаксиальные кабели, полупроводниковые приборы, двухэлектродные лампы. Обучающиеся учатся рассчитывать физические параметры этих устройств, а также знакомятся с различными режимами их работы и вариантами практического применения.

Метод анализа конкретной ситуации в наибольшей степени соответствует задачам высшего образования. Он более чем другие методы, способствует развитию у обучающихся изобретательности, умения решать проблемы с учетом конкретных условий и при наличии фактической информации. Групповая работа при анализе конкретной ситуации развивает способности проведения анализа и диагностики проблем. С помощью метода конкретной ситуации у обучающихся развиваются такие квалификационные качества, как умение четко формулировать и высказывать свою позицию, умение коммуницировать, дискутировать, воспринимать и оценивать информацию, поступающую в вербальной форме. Практические занятия проводятся в специальных аудиториях, оборудованных необходимыми наглядными материалами.

работа Самостоятельная предполагает проработку обучающимися выполнение домашних работ, отдельных вопросов теоретического курса, включающих решение задач, анализ конкретных ситуаций. Самостоятельная работа осуществляется в индивидуальном формате. Самостоятельная работа обучающимися на учебно-методических выполняется основе дисциплины (приложение 2). Самостоятельно изучаемые вопросы включаются в вопросы, выносимые на зачет.

6. Учебно-методическое и информационное обеспечение дисциплины

а) основная литература (библиотека СГАУ)

№ п/п	Наименование, ссылка для электронного доступа или кол-во экземпляров в библиотеке	Автор(ы)	Место издания, издательство, год	Используется при изучении разделов (из п. 4, таб. 3)
1	2	2	4	5
1	2	3	4	3
1.	Математическое моделирование и прогнозирование в технических системах: Учебное пособие http://znanium.com/bookread2.ph p?book=989948	Г.Г.Галустов	Ростов-на- Дону, 2016	Все разделы

б) дополнительная литература

№	Наименование, ссылка для	Автор(ы)	Место издания,	Используется при
п/п	электронного доступа или кол-во	Автор(ы)	издательство,	изучении разделов
11/11	экземпляров в библиотеке		год	(из п. 4.3)

1	2	3	4	5
1	Моделирование электротехнических систем http://znanium.com/bookread2.php 2book=548131	Е.Г.Гурова	Новосибирск, 2014	Все разделы
2	Моделирование в электроэнергетике: учебное пособие http://znanium.com/bookread2.php ?book=514263	А. Ф. Шаталов, И. Н. Воротнико в, М. А. Мастепане нко и др	Ставрополь, 2014	Все разделы

в) ресурсы информационно-телекоммуникационной сети «Интернет»

Для освоения дисциплины рекомендуются следующие сайты информационно-телекоммуникационной сети «Интернет»:

- официальный сайт университета http://www.sgau.ru
- Открытый колледж. Физика http://physics.ru
- новости естественных наук https://elementy.ru

г) периодические издания

1. «Вопросы электротехнологии» – журнал Саратовского государственного технического университета имени Гагарина Ю.А.

http://elibrary.ru/contents.asp?titleid=48773

д) информационные справочные системы и профессиональные базы данных

Для пользования стандартами и нормативными документами рекомендуется применять информационные справочные системы и профессиональные базы данных, доступ к которым организован библиотекой университета через локальную вычислительную сеть.

Для пользования электронными изданиями рекомендуется использовать следующие информационные справочные системы и профессиональные базы данных:

1. Научная библиотека университета http://library.sgau.ru

Базы данных содержат сведения обо всех видах литературы, поступающей в фонд библиотеки. Более 1400 полнотекстовых документов (учебники, учебные пособия и т.п.). Доступ – с любого компьютера, подключенного к сети Интернет.

2.Электронная библиотечная система «Лань» http://e.lanbook.com.

Электронная библиотека издательства «Лань» – ресурс, включающий в себя как электронные версии книг издательства «Лань», так и коллекции полнотекстовых файлов других российских издательств. После регистрации с компьютера университета – доступ с любого компьютера, подключенного к сети Интернет.

3.«Университетская библиотека ONLINE» http://www.biblioclub.ru.

Электронно-библиотечная система, обеспечивающая доступ к книгам, конспектам лекций, энциклопедиям и словарям, учебникам по различным областям научных знаний, материалам по экспресс-подготовке к экзаменам. После регистрации с компьютера университета — доступ с любого компьютера, подключенного к сети Интернет.

4. Научная электронная библиотека eLIBRARY.RU. http://elibrary.ru.

Российский информационный портал в области науки, медицины, технологии и образования. На платформе аккумулируются полные тексты и рефераты научных статей и публикаций. Доступ с любого компьютера, подключенного к сети Интернет. Свободная регистрация.

5.Информационная система «Единое окно доступа к образовательным ресурсам». http://window.edu.ru.

Информационная система предоставляет свободный доступ к каталогу образовательных Интернет-ресурсов и полнотекстовой электронной учебнометодической библиотеке для общего и профессионального образования. Доступ с любого компьютера, подключенного к сети Интернет.

1. ЭБС «Юрайт» http://www.biblio-online.ru.

Электронно-библиотечная система издательства «Юрайт». Учебники и учебные пособия от ведущих научных школ. Тематика: «Бизнес. Экономика», «Гуманитарные и общественные науки», «Естественные науки», «Информатика», «Прикладные науки. Техника», «Языкознание. Иностранные языки». Доступ - после регистрации с компьютера университета с любого компьютера, подключенного к Internet.

2. Профессиональная база данных «Техэксперт».

Современные, профессиональные справочные базы данных, содержащие нормативно-правовую, нормативно-техническую документацию и уникальные сервисы.

3. Поисковые интернет-системы Яндекс, Rambler, Google.

е) информационные технологии, используемые при осуществлении образовательного процесса:

К информационным технологиям, используемым при осуществлении образовательного процесса по дисциплине, относятся:

- персональные компьютеры, посредством которых осуществляется доступ к информационным ресурсам и оформляются результаты самостоятельной работы;
- проекторы и экраны для демонстрации слайдов мультимедийных лекций;
- активное использование средств коммуникаций (электронная почта, тематические сообщества в социальных сетях и т.п.).

• программное обеспечение:

№ п/п	Наименование раздела учебной дисциплины (модуля)	Наименование программы	Тип программы
-----------------	--	------------------------	---------------

1	Все темы дисциплины	Microsoft Office (Microsoft Access,	Вспомогательное
		Microsoft Excel, Microsoft InfoPath,	программное
		Microsoft OneNote, Microsoft Outlook,	обеспечение
		Microsoft PowerPoint, Microsoft Publisher,	
		Microsoft SharePoint Workspace,	
		Microsoft Visio Viewer, Microsoft Word).	
		Microsoft Desktop Education All Lng	
		Lic/SA Pack OLV E 1Y Acdmc Ent.	
		Лицензиат – ООО «Современные	
		технологии», г. Саратов.	
		Контракт № 0024 на передачу неисклю-	
		чительных (пользовательских) прав на	
		программное обеспечение от 11.12.2018	
		Γ.	
2	Все темы дисциплины	ESET NOD32 Antivirus Business Edition	Вспомогательное
		renewal for 2041 user (продление 2041	программное
		лицензий на срок 12 месяцев).	обеспечение
		Лицензиат – OOO «Компьютерный	
		супермаркет», г. Саратов.	
		Контракт № 0025 на приобретение прав	
		на использование средств антивирусной	
		защиты от 11.12.2018 г.	

7. Материально-техническое обеспечение дисциплины (модуля)

Для проведения лекционных, лабораторных и практических занятий, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации имеются учебные аудитории для проведения учебных занятий оснащенных необходимым оборудованием и техническими средствами обучения.

Для выполнения лабораторных работ и (или) практических занятий имеются учебные аудитории № 240, №244, №253, оснащенные комплектом обучающих плакатов, лабораторными установками.

Помещения для самостоятельной работы обучающихся - аудитория №413, читальный зал библиотеки, оснащены компьютерной техникой с возможностью подключения к сети «Интернет» и обеспечением доступа в электронную информационно-образовательную среду университета.

8. Оценочные материалы

Оценочные материалы, сформированные для проведения текущего контроля успеваемости и промежуточной аттестации обучающихся по дисциплине «Моделирование физических процессов в электротехнологиях» разработаны на основании следующих документов:

- Федерального закона Российской Федерации от 29.12.2012 N 273-ФЗ «Об образовании в Российской Федерации» (с изменениями и дополнениями);
- приказа Минобрнауки РФ от от 05.04.2017 № 301 «Об утверждении Порядка организации и осуществления образовательной деятельности по образовательным программам высшего образования программам бакалавриата, программам специалитета, программам магистратуры».

Оценочные материалы представлены в приложении 1 к рабочей программе дисциплины и включают в себя:

- перечень компетенций с указание этапов их формирования в процессе освоения образовательной программы;
- описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания;
- типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующие этапы формирования компетенций в процессе освоения образовательной программы;
- методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций.

9. Учебно-методическое обеспечение самостоятельной работы

Перечень учебно-методического обеспечения самостоятельной работы представлен в приложении 2 к рабочей программе по дисциплине «Моделирование физических процессов в электротехнологиях».

10. Методические указания для обучающихся по изучению дисциплины «Моделирование физических процессов в электротехнологиях»

Методические указания по изучению дисциплины «Моделирование физических процессов в электротехнологиях» представляют собой указания для лабораторных занятий.

Рассмотрено и утверждено на заседании кафедры «Инженерная физика, электрооборудование и электротехнологии» «26» августа 2019 года (протокол № 1).

Дополнения и изменения, внесенные в рабочую программу дисциплины «Моделирование физических процессов в электротехнологиях» на 2019/2020 учебный год:

Сведения об обновлении лицензионного программного обеспечения

Наименование программы	Примечание
ЕЅЕТ NOD 32 Реквизиты подтверждающего документа: Право на использование программного продукта ЕЅЕТ NOD32 Antivirus Business Edition renewal for 2041 user (продление 2041 лицензий на срок 12 месяцев). Лицензиат − ООО «Компьютерный супермаркет», г. Саратов. Контракт № 0025 на приобретение прав на использование средств антивирусной защиты от 11.12.2018 г.	Срок действия контракта истек
Каѕрегѕку Endpoint Security Реквизиты подтверждающего документа: Право на использование антивирусного программного обеспечения Каѕрегѕку Endpoint Security для бизнеса - Стандартный (1500-2449) 1 уеаг Educational Licence. Лицензиат — ООО «Солярис Технолоджис», г. Саратов. Контракт № ЕП-113 на оказание услуг по передаче неисключительных (пользовательских) прав на антивирусное программное обеспечение с внесением соответствующих изменений в аттестационную документацию по требованию защиты информации от 11.12.2019 г.	Переход на новое лицензионное программное обеспечение

Актуализированная рабочая программа дисциплины «Моделирование физических процессов в электротехнологиях» рассмотрена и утверждена на заседании кафедры «Инженерная физика, электрооборудование и электротехнологии» «11» декабря 2019 года (протокол №6).

Заведующий кафедрой

В.А.Трушкин

Дополнения и изменения, внесенные в рабочую программу дисциплины «Моделирование физических процессов в электротехнологиях» на 2019/2020 учебный год:

6. Учебно-методическое и информационное обеспечение дисциплины

- е) информационные технологии, используемые при осуществлении образовательного процесса:
 - программное обеспечение:

№ п/п	Наименование раздела учебной дисциплины (модуля)	Наименование программы	Тип программы	Сведения об обновлении ли- цензионного программного обеспечения
1	Все темы дисциплины	Microsoft Desktop Education (Microsoft Access, Microsoft Excel, Microsoft InfoPath, Mi- crosoft OneNote, Microsoft Outlook, Microsoft PowerPoint, Microsoft Publisher, Microsoft SharePoint Workspace, Mi- crosoft Visio Viewer, Microsoft Word)	Вспомога- тельная	Вспомогательное программное обеспечение: Предоставление неисключительных прав на ПО: DsktpEdu ALNG LicSAPk OLV E 1Y Acdmc Ent Предоставление неисключительных прав на ПО:
		Реквизиты подтверждающего документа: Право на использование Microsoft Desktop Education All Lng Lic/SA Pack OLV E 1Y Acdmc Ent. Лицензиат — ООО «Современные технологии», г. Саратов. Контракт № 0024 на передачу неисключительных (пользовательских) прав на программное обеспечение от 11.12.2018		Microsoft Office 365 Pro Plus Open Students Shared Server All Lng SubsVL OLV NL IMth Acdmc Stdnt w/Faculty Лицензиат — ООО «КОМПА-РЕКС», г. Саратов Контракт № А-032 на передачу неисключительных (пользовательских) прав на программное обеспечение от 23.12.2019 г.

Актуализированная рабочая программа дисциплины «Моделирование физических процессов в электротехнологиях» рассмотрена и утверждена на заседании кафедры «Инженерная физика, электрооборудование и электротехнологии» «23» декабря 2019 года (протокол №7).

Заведующий кафедрой

В.А.Трушкин

Дополнения и изменения, внесенные в рабочую программу дисциплины «Моделирование физических процессов в электротехнологиях» на 2020/2021 учебный год.

Пересмотрены оценочные материалы дисциплины.

Актуализированная рабочая про-	грамма	дисциплины «Мо	делир	ование ф	эизиче	ских
процессов в электротехнологиях» расс	иотрен	а и утверждена на	засед	ании каф	едры	«Ин-
женерная физика, электрооборудовани	е и эл	ектротехнологии»	« <u>25</u> »	августа	2020	года
(протокол № $\underline{1}$).						

Заведующий кафедрой

В.А. Трушкин

Дополнения и изменения, внесенные в рабочую программу дисциплины «Моделирование физических процессов в электротехнологиях» на 2020/2021 учебный год:

Сведения об обновлении лицензионного программного обеспечения

Наименование программы	Примечание
Реквизиты подтверждающего документа: Право на использование антивирусного программного обеспечения Каspersky Endpoint Security для бизнеса - Стандартный (1500-2449) 1 year Educational Licence. Лицензиат — ООО «Солярис Технолоджис», г. Саратов. Контракт № ЕП-113 на оказание услуг по передаче неисключительных (пользовательских) прав на антивирусное программное обеспечение с внесением соответствующих изменений в аттестационную документацию по требованию защиты информации от 11.12.2019 г.	Срок действия контракта истек
Казрегsky Endpoint Security Реквизиты подтверждающего документа: Право на использование Kaspersky Endpoint Security для бизнеса - Стандартный (250-499) 1 year Educational Renewal License. Лицензиат – ООО «Современные технологии», г. Саратов. Сублицензионный договор № 6-219/2020/223-1370 от 01.12.2020 г.	Заключен новый договор сроком на 1 год (11.12.2020 г 10.12.2021 г.)
Місгоsoft Office 365 Pro Plus Open Students Shared Server All Lng SubsVL OLV NL lMth Acdmc Stdnt w/Faculty Реквизиты подтверждающего документа: Предоставление неисключительных прав на ПО: DsktpEdu ALNG LicSAPk OLV Е 1Y Acdmc Ent. Лицензиат — ООО «КОМПАРЕКС», г. Саратов. Контракт № А-032 на передачу неисключительных (пользовательских) прав на программное обеспечение от 23.12.2019 г.	Срок действия контракта истекает 23.12.2020 г.
Місгоsoft Office Реквизиты подтверждающего документа: Предоставление неисключительных прав на ПО: DsktpEdu ALNG LicSAPk OLV E 1Y Acdmc Ent. Лицензиат — ООО «КОМПАРЕКС», г. Саратов. Сублицензионный договор № 201201/КЛ/Л/44-208 на передачу неисключительных прав на программы для ЭВМ с конечным пользователем по адресу: г. Саратов, ул. Советская, 60 от 01.12.2020 г.	Заключен новый договор сроком на 1 год (по 31.12.2021 г.)

Актуализированная рабочая программа дисциплины «Моделирование физических процессов в электротехнологиях» рассмотрена и утверждена на заседании кафедры «Инженерная физика, электрооборудование и электротехнологии» «11» декабря 2020 года (протокол $N \hspace{-1pt} 2 \hspace{-1pt} 5$).

Заведующий кафедрой

В.А. Трушкин