Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Соловьев Дмитрий Александрович

Должность: ректор ФГБОУ ВО Вавиловский университет

Дата подписания: 18.04.2023 11:50:20 Уникальный программный ключ:

528682d78e671e566ab07f01fe1ba2172f735a12

МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Саратовский государственный аграрный университет имени Н. И. Вавилова»

СОГЛАСОВАНО

Заведующий кафедрой

Ят /Камышова Г.Н./ «И» об 2021 г.

УТВЕРЖДАЮ

И.о. декана факультета

/Попова О.М.

об 2021 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Дисциплина

ПРИКЛАДНАЯ МАТЕМАТИКА В УПРАВЛЕНИИ КАЧЕСТВОМ

Направление подготовки

27.03. 02 Управление качеством

Управление качеством в

Направленность (профиль)

производственно-технологических

системах

Квалификация выпускника

Бакалавр

Нормативный срок

обучения

4 года

Форма обучения

заочная

Разработчик: доцент, Кочегарова О.С.

Саратов 2021

1. Цель освоения дисциплины

Целью освоения дисциплины является формирование у обучающихся знаний понятийного математического аппарата и математических методов для решения прикладных задач в управлении качеством.

2. Место дисциплины в структуре ОПОП ВО

В соответствии с учебным планом по направлению подготовки 27.03.02 Управление качеством направленности (профиля) «Управление качеством в производственно-технологических системах» дисциплина «Прикладная математика в управлении качеством» относится к обязательной части Блока 1.

Для изучения данной дисциплины необходимы знания, умения и навыки, формируемые предшествующими дисциплинами: «Математика» при получении среднего (полного) общего образования.

Дисциплина «Прикладная математика в управлении качеством» является базовой для изучения дисциплин: Инженерная физика, Подготовка к процедуре защиты и защита выпускной квалификационной работы, Инструменты управления качеством, Аудит качества в производственно-технологических системах, Статистические методы обработки данных в управлении качеством.

3. Перечень планируемых результатов обучения по дисциплине, соотнесенных с индикаторами достижениями компетенций

Изучение данной дисциплины направлено на формирование у обучающихся компетенции (-ий), представленных в табл. 1

Таблица 1

Требования к результатам освоения дисциплины № Код п/п компетенции Содержание компетенции (или ее части) Индикаторы достижения компетенций и знать В результате изучения учебной дисциплины обучающиеся должны: знать владеть 1 2 3 4 5 6 7

$N_{\underline{0}}$	Код	Содержание компетенции	Индикаторы достижения	В результате изучения уч	ебной дисциплины обуча	нощиеся должны:
п/п	компетенции	(или ее части)	компетенций	знать	уметь	владеть
1	2	3	4	5	6	7
1	ОПК-2	Способен формулировать	ОПК 2.1 Формулирует	основные законы	производить расчеты	повторением
		задачи профессиональной	задачи профессиональной	математики: теории	по известному	стандартной
		деятельности на основе	деятельности на основе	функций многих	алгоритму; задавать	процедуры решения
		знаний профильных	знаний, профильных	переменных и	вопросы по изученным	типовых
		разделов математических	разделов математических и	дифференциальных	темам; сравнивать по	математических
		и естественнонаучных	естественнонаучных	уравнений; теории	аналогии алгоритмы	задач по изученным
		дисциплин (модулей)	дисциплин (модулей).	кратных интегралов;	решения	темам;
			ОПК 2.1 Использует	теории теории	практических задач	применением
			профильные разделы	вероятностей и		методов
			математических и	математической		построения
			естественнонаучных	статистики		математических
			дисциплин (модулей)			моделей и
						интерпретацией
						полученных
						результатов;
						использованием
						полученных знаний
						к изучению
						следующих
						дисциплин курса
2	ОПК - 4	Способен осуществлять	ОПК 4.1 Применяет	основные законы	производить расчеты	повторением
		оценку эффективности	математические методы	математики: теории	по известному	стандартной
		систем управления	оценки эффективности	функций многих	алгоритму; задавать	процедуры решения
		качеством,	систем управления	переменных и	вопросы по изученным	типовых
		разработанных на основе	ОПК 4.2 Имеет	дифференциальных	темам; сравнивать по	математических
		математических методов	практический опыт	уравнений; теории	аналогии алгоритмы	задач по изученным
			применения математических	кратных интегралов;	решения	темам;
			методов для выполнения	теории теории	практических задач	применением
			оценки эффективности	вероятностей и		методов

	системы управления	математической	построения
		статистики	математических
			моделей и
			интерпретацией
			полученных
			результатов;
			использованием
			полученных знаний
			к изучению
			следующих
			дисциплин курса

4. Объём, структура и содержание дисциплины

Общая трудоемкость дисциплины составляет 6 зачетных единиц, 216 часов. Таблица 2

Объем дисциплины

		Количество часов					
	Всего		в т.ч. по годам				
		1	2	3	4	5	6
Контактная работа –	24,2	12,1	12,1				
всего, в т.ч.	24,2	12,1	12,1				
аудиторная работа:	24	12	12				
лекции	8	4	4				
лабораторные	X	X	X				
практические	16	8	8				
промежуточная	0,2						
аттестация	0,2						
контроль	X	X	X				
Самостоятельная	191,8	95,9	95,9				
работа	191,0	93,9	93,9				
Форма итогового	3	3	3				
контроля	,	3	3				
Курсовой проект	X	Х	X				
(работа)	Λ	Λ	Λ				

Структура и содержание дисциплины

Таблица 3

		семестра	Контактная работа			Самос- тоятель- ная работа	Кон	нтроль
№ п/п	Тема занятия Содержание	Неделя сем	Вид занятия	Форма проведения	Количество часов	Количество	Вид	Форма
1	2	3	4	5	6	7	8	9
	2 курс	•	•	•				
1	Функции многих переменных. Функции многих переменных, предел, непрерывность, частные производные 1-го и 2-го порядков. Полный дифференциал. Экстремум функции независимых переменных		Л	Т	2	16	TK	УО

1	2	3	4	5	6	7	8	9
2	Дифференциальные уравнения первого порядка.	3	4	3	U	/	0	9
2	Дифференциальные уравнения первого порядка. Дифференциальные уравнения с разделенными и разделяющимися переменными. Однородные дифференциальные уравнения первого порядка. Уравнения Бернулли. Решение задачи Коши для ДУ 1 порядка. Частное решение и частный интеграл. Неоднородные ЛДУ второго порядка с постоянными коэффициентами. Нахождение общего решения методом неопределенных коэффициентов.		Л	Т	2	16	TK	УО
3	Элементы теории вероятностей и математической статистики		ПЗ	Т	2	16	ТК	УО
4	Полный дифференциал. Вычисление полного дифференциала, его приложения к приближенным вычислениям. Производная сложной, неявной функции.		ПЗ	Т	2	16	TK	УО
5	Экстремум функции независимых переменных и элементы векторного анализа и теория поля Необходимые и достаточные условия экстремума. Условный экстремум. Поверхности и линии уровня. Производная по направлению. Градиент. Уравнение касательной плоскости, нормали к поверхности.		ПЗ	Т	2	16	ТК	УО
6	Дифференциальные уравнения первого порядка. Дифференциальные уравнения с разделенными и разделяющимися переменными. Однородные дифференциальные уравнения первого порядка. Уравнения Бернулли. Решение задачи Коши для ДУ 1 порядка. Частное решение и частный интеграл. Линейные неоднородные дифференциальные уравнения 2 порядка. Нахождение общего решения методом вариации произвольных постоянных		ПЗ	Т	2	15,9	ТК	УО
7	Выходной контроль				0,1		ВыхК	3
8	Итого				12,1	95,9		
9	Комбинаторика. Сочетания, размещения перестановки без повторений и с повторениями. Правило суммы и произведения. Вычисление элементов комбинаторики. Классическое, геометрическое и статистическое определения вероятности. Случайные события. Алгебра событий.		Л	Т	2	16	ТК	УО
10	Теоремы сложения и умножения вероятностей. Формула полной вероятности. Формула Байеса. Повторение событий: формула Бернулли, локальная и интегральная теоремы Лапласа.		Л	Т	2	16	TK	УО
11	Дискретные и непрерывные случайные величины: закон распределения, функция распределения и ее свойства. Основные числовые параметры СВ и их свойства. Биномиальный закон, закон Пуассона. Закон распределения, функция распределения и ее свойства. Основные числовые параметры СВ и их свойства.		ПЗ	Т	2	16	TK	УО
12	Равномерный закон распределения, Нормальный закон непрерысных СВ. Числовые характеристики СВ: математическое ожидание, дисперсия, среднее квадратическое отклонение.		ПЗ	Т	2	16	ТК	УО

1	2	3	4	5	6	7	8	9
13	Элементы математической статистики. Построение дискретного и интервального вариационного ряда. Полигон и гистограмма. Вычисление числовых характеристик вариационных рядов: средняя выборочная, дисперсия, среднее квадратическое отклонение, мода, медиана, коэффициенты вариации, эксцесса, асиметрии. Точечные и интервальные оценки параметров распределения		ПЗ	П	2	16	TK	УО, Т
14	Корреляционно – регрессионный анализ. Уравнение линейной регрессии. Вычисление и оценка линейного коэффициента корреляции. Математические модели на составление уравнение линейной регрессии.		ПЗ	Т	2	15,9	ТК	УО
15	Выходной контроль				0,1		ВыхК	3
16	Итого за 2 курс				12,1	95,9		
Ито	го:				24,2	191,8		

Примечание:

Условные обозначения:

Виды аудиторной работы: Л – лекция, ПЗ – практическое занятие.

Формы проведения занятий: B — лекция-визуализация, Π — проблемная лекция/занятие, T — лекция/занятие, проводимое в традиционной форме

Виды контроля: ТК - текущий контроль, ВыхК – выходной контроль. **Форма контроля**: УО – устный опрос, Т – тестирование, З – зачет.

5. Образовательные технологии

Организация занятий по дисциплине «Прикладная математика в управлении качеством» проводится по видам учебной работы: лекции, практические занятия, текущий контроль.

Реализация компетентностного подхода в рамках специальности 27.03.02 Управление качеством направленности (профиля) «Управление качеством в производственно-технологических системах» предусматривает использование в учебном процессе активных и интерактивных форм проведения занятий в сочетании с внеаудиторной работой для формирования и развития профессиональных навыков обучающихся.

Лекционные занятия проводится в поточной аудитории с применением мультимедийного проектора в виде учебной презентации. Основные моменты лекционных занятий конспектируются. Отдельные темы предлагаются для самостоятельного изучения с обязательным составлением конспекта (контролируется).

Целью практических занятий является выработка практических навыков работы с дифференциальным и интегральным исчислением функции одной переменной, с использованием вероятностных и статистических методов и основ при рассмотрении вопросов теории вероятностей и математической статистики для постановки и решения конкретных исследовательских задач,

ориентированных на практическое применение при изучении специальных дисциплин.

Для достижения этих целей используются как традиционные формы работы – решение задач, выполнение самостоятельных и контрольных работ, тестовых заданий и т.п., так и интерактивные методы – лекция-визуализация, деловая игра, мозговой штурм, проблемная лекция.

Лекция-визуализация учит обучающихся преобразовывать устную и письменную информацию - в визуальную форму, систематизируя и выделяя при этом наиболее существенные элементы содержания. Данный вид лекционных занятий реализует и дидактический принцип доступности: возможность интегрировать зрительное и вербальное восприятие информации. Процесс визуализации является свертыванием различных видов информации в наглядный образ. Как известно, в восприятии материала трудность вызывает представление абстрактных понятий, процессов, явлений, особенно теоретического характера. Визуализация позволяет в значительной степени преодолеть эту трудность и придать абстрактным понятиям наглядный, конкретный характер.

Проблемная лекция является одним из важнейших элементов проблемного обучения обучающихся. Процесс усвоения учебной информации не может быть сведён лишь к её восприятию, запоминанию и воспроизведению. Знания, полученные обучающимися, становятся глубокими только в результате их собственной познавательной активности. Формирование активности и составляет ядро проблемного обучения, в процессе которого резко возрастает роль таких видов познавательной деятельности обучающихся, как поиск ответов на проблемные вопросы, поставленные преподавателем, исследование определенных положений теории и практики, самостоятельное составление и решение нестандартных логический первоисточников, задач, анализ текстов дополнительной литературы и т. п. Данная работа требует применения накопленных знаний в различных ситуациях, чему не могут научить учебники.

Самостоятельная работа охватывает проработку обучающимися отдельных вопросов теоретического курса, выполнение домашних работ, включающих решение задач, типовых расчетов, анализ и интерпретация полученных результатов исследований и подготовку их презентаций, и т.п.

Самостоятельная работа осуществляется в индивидуальном и групповом формате. Самостоятельная работа выполняется обучающимися на основе учебнометодических материалов дисциплины. Самостоятельно изучаемые вопросы курса включаются в экзаменационные вопросы.

6. Учебно-методическое и информационное обеспечение дисциплины а) основная литература (библиотека СГАУ)

№ п/п	Наименование, ссылка для электронного доступа или кол-во экземпляров в библиотеке	Автор(ы)	Место издания, издательство, год	Используется при изучении разделов (из п. 4, таб. 3)
1	2	3	4	5
1.	Высшая математика. [Электронный ресурс]: учебник / Режим доступа: https://znanium.com/catalog/document?id=364 208	В. С. Шипачев	Москва, Инфра-М, 2021.	1 – 14
2.	Задачник по высшей математике. [Электронный ресурс]: учебное пособие / Режим доступа: https://znanium.com/catalog/document? id=376717	В. С. Шипачев	Москва, Инфра-М, 2021.	1 – 14

б) дополнительная литература

No	Наименование, ссылка для	Автор(ы)	Место издания,	Используется при
п/п	электронного доступа или кол-во	F ()	издательство,	изучении разделов
11/11	экземпляров в библиотеке		год	(из п. 4.3)
1	2	3	4	5
1	Математический анализ. Сборник задач и решений с применением системы Maple. [Электронный ресурс]: учебное пособие Режим доступа: https://znanium.com/catalog/document?id= 364613	Кузнецова, О. С.	Москва, Инфра- М, 2021.	1-14
2	Алгебра и геометрия. Сборник задач и решений с применением системы Maple. [Электронный ресурс]: учебное пособие / Режим доступа: https://znanium.com/catalog/document?id= 365680	Кирсанов, М. Н	Москва, Инфра- М, 2021.	1-14

в) ресурсы информационно-телекоммуникационной сети «Интернет»

- 1. Официальный сайт университета: http://www.sgau.ru/;
- 2. Электронно-библиотечная система издательства «Лань» http://elanbook.com (доступ с компьютеров СГАУ);
- 3. Электронно-библиотечная система Znanium http://Znanium.com (доступ с компьютеров СГАУ);
- 4. Электронная библиотека научных публикаций http://www.elibrary.ru.
- 5. Федеральный портал «Российское образование» http://www.edu.ru/
- 6. Интегральный каталог ресурсов Федерального портала «Российское образование» http://soip-catalog.informika.ru/
 - 7. Федеральный фонд учебных курсов

http://www.ido.edu.ru/ffec/econ-index.html

- 8. http://free.megacampus.ru открытая библиотека электронных учебных курсов.
- 9. http://mathportal.net сайт создан для помощи обучающимся, желающим самостоятельно изучать высшую математику, и помощи преподавателям в подборке материалов к занятиям и контрольным работам.
- **г) периодические издания** *не предусмотрено*

д) информационные справочные системы и профессиональные базы данных

Для пользования стандартами и нормативными документами рекомендуется применять информационные справочные системы и профессиональные базы данных, доступ к которым организован библиотекой университета через локальную вычислительную сеть.

Для пользования электронными изданиями рекомендуется использовать следующие информационные справочные системы и профессиональные базы данных:

1. Научная библиотека университета http://www.sgau.ru/biblioteka/

Базы данных содержат сведения обо всех видах литературы, поступающей в фонд библиотеки. Более 1400 полнотекстовых документов (учебники, учебные пособия и т.п.). Доступ — с любого компьютера, подключенного к сети Интернет.

2. Электронная библиотечная система «Лань» http://e.lanbook.com.

Электронная библиотека издательства «Лань» – ресурс, включающий в себя как электронные версии книг издательства «Лань», так и коллекции полнотекстовых файлов других российских издательств. После регистрации с компьютера университета – доступ с любого компьютера, подключенного к сети Интернет.

3. «Университетская библиотека ONLINE» http://www.biblioclub.ru.

Электронно-библиотечная система, обеспечивающая доступ к книгам, конспектам лекций, энциклопедиям и словарям, учебникам по различным областям научных знаний, материалам по экспресс-подготовке к экзаменам. После регистрации с компьютера университета — доступ с любого компьютера, подключенного к сети Интернет.

4. Научная электронная библиотека eLIBRARY.RU. http://elibrary.ru.

Российский информационный портал в области науки, медицины, технологии и образования. На платформе аккумулируются полные тексты и рефераты научных статей и публикаций. Доступ с любого компьютера, подключенного к сети Интернет. Свободная регистрация.

5. ЭБС «Юрайт» <u>http://www.biblio-online.ru</u>.

Электронно-библиотечная система издательства «Юрайт». Учебники и учебные пособия от ведущих научных школ. Тематика: «Бизнес. Экономика», «Гуманитарные и общественные науки», «Естественные науки», «Информатика», «Прикладные науки. Техника», «Языкознание. Иностранные языки». Доступ -

после регистрации с компьютера университета с любого компьютера, подключенного к Internet.

6. Поисковые интернет-системы Яндекс, Rambler, Google и др.

е) информационные технологии, используемые при осуществлении образовательного процесса:

К информационным технологиям, используемым при осуществлении образовательного процесса по дисциплине, относятся:

- персональные компьютеры, посредством которых осуществляется доступ к информационным ресурсам и оформляются результаты самостоятельной работы;
 - проекторы и экраны для демонстрации слайдов мультимедийных лекций;
- активное использование средств коммуникаций (электронная почта, тематические сообщества в социальных сетях и т.п.).

• программное обеспечение: *

- Iporpum	MHOC OOCCHCACHINE.	
Наименование раздела		Тип программы
учебной дисциплины	Наименование программы	(расчетная, обучающая,
(модуля)		контролирующая и.т.п.)
1	2	3
Все разделы	Предоставление неисключительных прав на ПО:	вспомогательная
дисциплины	DsktpEdu ALNG LicSAPk OLV E 1Y Acdmc Ent.	
	Лицензиат – ООО «КОМПАРЕКС», г. Саратов	
	Сублецинзионный договор №201201/КЛ/Л/44-208 на	
	передачу неисключительных прав на программы для	
	ЭВМ с конечным пользователем по адресу: г.Саратов,	
	ул. Советская, 60 от 01.12.2020 г.	
Все разделы	Право на использование Kaspersky Endpoint Security	вспомогательная
дисциплины	для бизнеса - Стандартный (250-499) 1 year Educational	
	Renewal License. Лицензиат – ООО «Современные	
	технологии», г. Саратов.	
	Сублицензионный договор № 6-219/2020/223-1370 от	
	01.12.2020 г.	

7. Материально-техническое обеспечение дисциплины (модуля)

Для проведения занятий лекционного и семинарского типов, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации необходимы аудитории с меловыми или маркерными досками, достаточным количеством посадочных мест и освещенностью. Для использования медиаресурсов необходимы проектор, экран, компьютер или ноутбук, по возможности – частичное затемнение дневного света.

Для проведения лекционных, практических занятий и контроля самостоятельной работы по дисциплине кафедры «Математика, механика и инженерная графика» имеются аудитории №№ 120, 121, 202, 248, 249, 335, 337, 341, 342, 344, 349, 402, 522 153, 307, 308.

Помещения для самостоятельной работы обучающихся (аудитория №№ 153, 307, 308, читальные залы библиотеки) оснащены компьютерной техникой с

возможностью подключения к сети «Интернет» и обеспечением доступа в электронную информационно-образовательную среду университета.

8. Оценочные материалы

Оценочные материалы, сформированные для проведения текущего контроля успеваемости и промежуточной аттестации обучающихся по дисциплине «Прикладная математика в управлении качеством» разработан на основании следующих документов:

- Федерального закона Российской Федерации от 29.12.2012 N 273-ФЗ «Об образовании в Российской Федерации» (с изменениями и дополнениями);
- приказа Минобрнауки РФ от 05.04.2017 № 301 «Об утверждении Порядка организации и осуществления образовательной деятельности по образовательным программам высшего образования программам бакалавриата, программам специалитета, программам магистратуры»;

Оценочные материалы представлены в Приложении 1 к рабочей программе дисциплины и включают в себя:

- перечень компетенций с указанием этапов их формирования в процессе освоения образовательной программы;
- описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания;
- типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующие этапы формирования компетенций в процессе освоения образовательной программы;
- методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций.

9. Учебно-методическое обеспечение самостоятельной работы

Перечень учебно-методического обеспечения самостоятельной работы представлен в приложении 2 к рабочей программе по дисциплине «Прикладная математика в управлении качеством».

10. Методические указания для обучающихся по изучению дисциплины «Прикладная математика в автомобиле- и тракторостроении»

Методические указания по изучению дисциплины «Прикладная математика в автомобиле- и тракторостроении» включают в себя:

1. Краткий курс лекций.

Рассмотрено и утверждено на заседании кафедры «Математика, механика и инженерная графика» «17» мая 2021 года (протокол № 10).

Лист изменений и дополнений, вносимых в рабочую программу дисциплины «Прикладная математика в управлении качеством»

Дополнения и изменения, внесенные в рабочую программу дисциплины «Прикладная математика в управлении качеством» на 2021/2022 учебный год:

Сведения об обновлении лицензионного программного обеспечения

Наименование программы	Примечание
Microsoft Office Реквизиты подтверждающего документа: Предоставление неисключительных прав на ПО: DsktpEdu ALNG LicSAPk OLV E 1Y Acdmc Ent. Лицензиат — ООО «КОМПАРЕКС», г. Саратов	Срок действия контракта истекает 31.12.2021 г.
Сублецинзионный договор №201201/КЛ/Л/44-208 на передачу неисключительных прав на программы для ЭВМ с конечным пользователем по адресу: г.Саратов, ул. Советская, 60 от 01.12.2020 г.	
Microsoft Office Реквизиты подтверждающего документа:	Заключен новый договор сроком на 1 год (по 31.12.2022 г.)
Контракт №АЭ-030 на продление лицензионного соглашения на программное обеспечение Microsoft, ООО «КОМПАРЕКС», г. Саратов от 15.12.2021 г.	(110-51.12.2022 1.)

Заведующий кафедрой

(подпись)

В.Н. Буйлов

Лист изменений и дополнений, вносимых в рабочую программу дисциплины «Прикладная математика в управлении качеством»

Дополнения и изменения, внесенные в рабочую программу дисциплины «Прикладная математика в управлении качеством» на 2021/2022 учебный год:

Сведения об обновлении лицензионного программного обеспечения

Наименование программы	Примечание
Kaspersky Endpoint Security	Срок действия контракта истек
Реквизиты подтверждающего документа: Право на использование Kaspersky Endpoint Security для бизнеса - Стандартный (250-499) 1 year Educational Renewal License. Лицензиат — ООО «Современные технологии», г. Саратов.	
Сублицензионный договор № 6-219/2020/223-1370 от 01.12.2020 г. Kaspersky Endpoint Security	Заключен новый договор сроком на 1 год
Реквизиты подтверждающего документа: Право на использование Kaspersky Endpoint Security для бизнеса - Стандартный (250-499) 1 year Educational Renewal License. Лицензиат — ООО «Современные технологии», г. Саратов.	(по 31.12.2022 г.)
Сублицензионный договор № 6-133/2021/223-1205 от 09.11.2021 г.	

Актуализированная рабочая программа дисциплины «Прикладная математика в управлении качеством» рассмотрена и утверждена на заседании кафедры «Математика, механика и инженерная графика» «28» декабря 2021 года (протокол № 7).

(подпись)

Заведующий кафедрой

В.Н. Буйлов