# Надежкина Галина Петровна

# СОВЕРШЕНСТВОВАНИЕ УСТРОЙСТВ ПРИПОВЕРХНОСТНОГО ПОЛИВА ДОЖДЕВАЛЬНОЙ МАШИНЫ «ФРЕГАТ»

06.01.02 – мелиорация, рекультивация и охрана земель

АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата технических наук

Работа выполнена в федеральном государственном бюджетном образовательном учреждении высшего профессионального образования «Саратовский государственный аграрный университет имени Н.И. Вавилова».

Научный руководитель –

Слюсаренко Владимир Васильевич, доктор технических наук, профессор

Официальные оппоненты:

#### Рязаниев Анатолий Иванович

доктор технических наук, профессор ГАОУ ВПО «Московский государственный областной социально-гуманитарный институт», профессор кафедры машиноведения

#### Слабунов Владимир Викторович

кандидат технических наук, ФГБНУ «Российский научно-исследовательский институт проблем и мелиорации», начальник отдела научного

обоснования разработки нормативнометодического обеспечения мелиорации

**Ведущая организация** –  $\Phi \Gamma E O Y B \Pi O$  «Волгоградский государственный аграрный университет».

Защита состоится 12 декабря 2014 г. в  $10^{00}$  часов на заседании диссертационного совета Д 220.061.06 на базе федерального государственного бюджетного образовательного учреждения высшего профессионального образования «Саратовский государственный аграрный университет им. Н.И. Вавилова» по адресу: 410012, г. Саратов, ул. Советская, 60, ауд. 325 им. А.В. Дружкина

С диссертацией и авторефератом можно ознакомиться в библиотеке ФГБОУ ВПО «Саратовский ГАУ» и на сайте: www.sgau.ru

| Отзывы на автореферат просим высылать по адресу: 410012, г. Сарат | гов, |
|-------------------------------------------------------------------|------|
| Театральная пл.1., E-mail: dissovet01@sgau.ru.                    |      |

| Автореферат разослан « | >>> | 2014 г.   |
|------------------------|-----|-----------|
| 1210peqper pesseum     |     | _ 0 1 . 1 |

Учёный секретарь диссертационного совета

Маштаков Дмитрий Анатольевич

#### ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы исследования. Орошение является важным фактором интенсификации сельскохозяйственного производства. Наиболее распространенным способом механизированного полива является дождевание. ДМ «Фрегат» является наиболее распространенной в Саратовской области. На ее долю в стране и в Саратовской области приходится соответственно более 42 и 76 % от всего количества дождевальных машин. Преимущества ДМ «Фрегат» очевидны: автоматический полив в круглосуточном режиме; высокая производительность, значительный срок службы базовых деталей; простота конструкции и дешевизна по сравнению с зарубежными дождевальными машинами и др.

Анализ информационно-аналитических материалов выявил следующие недостатки полива дождевальной машиной «Фрегат»: непроизводительные потери воды на испарение и снос, обычно они составляют 10–15 %, в жаркие дневные часы могут достигать 20–30% и более; недостаточная равномерность полива при ветре, коэффициент эффективного полива уменьшается до 0,5…0,6; значительное энергетическое воздействие струйного дождя на почву, что приводит к неконтролируемому стоку и перераспределению воды по полю, прибиванию молодых растений и покрытию их мелкоземом при поливе дождем большой мощности.

Важнейшим направлением в решении выше изложенных проблем является научное обоснование и разработка новой техники полива с учетом мировых тенденций развития мелиорации. Задачи исследований, направленные на минимизацию или устранение недостатков, обеспечат значительную экономию водных ресурсов и будут способствовать повышению урожайности сельскохозяйственных культур.

В связи с этим улучшение агротехнических показателей полива ДМ «Фрегат» является актуальной задачей.

**Степень разработанности темы.** В Российской Федерации дождевальные машины предусматривают полив различных культур на различных режимах, различными нормами. В исследованиях особое внимание уделено поливам рассады овощных и бахчевых, культур.

Процесс испарения воды в окружающую среду при поливе дождеванием хорошо описан в работах В.Ф. Дунского, И.Д.Федоренко, Д.В. Сивухина и др. Однако при этом не учитывались метеорологические факторы, а технологические параметры дождя исследовались как фактические для конкретных машин без учета конструктивных параметров дождеобразующих устройств и их местоположения над поверхностью земли.

Таким образом, требуются исследования и разработка новых конструкций и технологических приемов подачи воды к растениям с меньшими потерями на испарение и снос, с минимальным воздействием на почву и растения.

**Цель исследований** — повышение эффективности использования ДМ «Фрегат» путем совершенствования технологии и конструкции устройств приповерхностного дождевания.

#### Задачи исследований:

- 1. Провести анализ эффективности использования ДМ «Фрегат» и определить перспективный способ и устройства, обеспечивающие агротехнические требования полива.
- 2. Теоретически обосновать снижение потерь воды на испарение и снос, а также повышение равномерности полива ДМ «Фрегат» с устройствами приповерхностного дождевания.

- 3. Разработать конструкцию устройства приповерхностного дождевания, удовлетворяющую агротехническим требования полива.
- 4. Экспериментально исследовать агротехнические показатели полива ДМ «Фрегат» с устройствами приповерхностного дождевания.
- 5. Оценить экономическую эффективность применения на ДМ «Фрегат» устройств приповерхностного дождевания.

### Научная новизна работы:

- обоснованы и уточнены математические зависимости, описывающие процессы испарения и сноса дождя при поливе дождеванием, полета и сноса струй при ветре;
- установлено влияние конструктивных параметров насадок и устройств приповерхностного полива на агротехнические показатели полива ДМ «Фрегат»;
- предложены новые математические зависимости, описывающие потери воды при поливе ДМ «Фрегат» с учетом технологических параметров и метеорологических условий.

**Теоретическая и практическая значимость работы.** Теоретическая значимость работы заключается в обосновании и уточнение математических зависимостей, описывающих процессы испарения и сноса дождя при поливе дождеванием, полета и сноса струй при ветре.

Разработаны и обоснованы новая конструкция устройства приповерхностного дождевания и дефлекторной насадки и технологические схемы их расстановки на пролетах ДМ «Фрегат», обеспечивающие формирование качества и снижение интенсивности дождя.

Предложены новые математические зависимости, описывающие процесс дождевания при поливе ДМ «Фрегат» в зависимости от технологических параметров и метеорологических условий.

Практическая значимость работы заключается в том, что проведение исследований завершено внедрением в орошаемых хозяйствах ДМ «Фрегат» с устройствами приповерхностного дождевания (УПД) и усовершенствованными дефлекторными насадками (ДН) из полимерного материала, установленными на трубопроводе машины по учащенной схеме в шахматном порядке, что обеспечивает: повышение равномерности полива при ветре на 16–45 %, снижение потерь воды на испарение и снос на 14–20 %, уменьшение энергетического воздействия дождя на почву и повышение нормы полива до стока на 18–43 %, повышение урожайности сельскохозяйственных культур на 5–18 % и производительности машин на 8–15 %.

Методология и методы исследований. В работе использовались теоретические методы исследований — математическое моделирование, системный анализ, описания технологических процессов на основе известных законов и методов классической механики и математического анализа. Экспериментальные методы включали полевые и лабораторные исследования по изучению агротехнических и энергетических характеристик полива ДМ «Фрегат» с устройством приповерхностного дождевания, водных свойств почвы и урожайности сельскохозяйственных культур. Данные исследования выполняли в соответствии с требованиями РД 70.11.1–89 «Машины и установки дождевальные. Программа и методика испытаний».

#### Положения, выносимые на защиту:

1. Теоретическое обоснование снижения потерь воды на испарение, снос и повышение равномерности полива ДМ «Фрегат», модель расчета испарения воды при дождевании с учетом технологических параметров ДМ и метеорологических условий.

- 2. Конструктивно-технологическая схема приповерхностного дождевания и размещения УПД на ДМ «Фрегат».
- 3. Результаты аналитических и экспериментальных исследований устройств приповерхностного дождевания, величин потерь воды на испарение и снос в зависимости от конструктивно-технологических параметров и метеорологических условий.
- 4. Результаты исследований, подтверждающие эффективность использования ДМ «Фрегат» с устройствами приповерхностного дождевания.

Степень достоверности и апробация результатов. Достоверность научных результатов подтверждается большим объемом экспериментального материала, применением современных государственных стандартов при организации и проведении полевых экспериментов, подтвержденных актами внедрения. Степень достоверности обеспечена статистическими методами оценки данных, с использованием ЭВМ, высокой степенью сходимости теоретических исследований, адекватность математических моделей и подтверждается большим объемом экспериментальных исследований.

Основные положения диссертации были доложены и обсуждены на Всероссийской научно-практической конференции «Аграрная наука в XXI веке: проблемы и перспективы» (Саратов, 2009), Международной научно-практической конференции «Основы рационального природопользования» (Саратов, 2011);; научных конференциях профессорско-преподавательского состава в Саратовском государственном аграрном университете им. Н.И. Вавилова (Саратов, 2009–2013).

ДМ «Фрегат» с устройством приповерхностного дождевания, обеспечивающие ресурсосберегающие процессы полива испытана в ФГУ «Поволжская машиноиспытательная станция». Результаты исследований и устройства приповерхностного дождевания для ДМ «Фрегат» внедрены в ОПХ «ВолжНИИГиМ», ООО «ВИТ» Энгельсского района Саратовской области и используются в ЗАО Агрофирма «Волга» Марксовского района, ОНО «Крутое» Балаковского района, ООО «Мелиоснаб» (г. Маркс), ФГБНУ «Волж-НИИГиМ» и др.

По результатам исследований опубликовано 15 научных работ, в том числе 5 в рецензируемых научных изданиях, 1 патент на полезную модель. Общий объём публикаций составляет 3,75 печ. л., из них авторские -2,09 печ. л.

Структура и объём диссертации. Диссертация изложена на 167 страницах компьютерного текста, состоит из введения, пяти глав, общих выводов, имеет 19 таблиц, 43 рисунка, 9 приложений. Список литературы включает в себя 178 наименований, в том числе 16 на иностранных языках.

#### Содержание работы

**Во «Введении»** обоснована актуальность работы, ее практическая значимость, представлены основные положения, выносимые на защиту.

В первой главе «Состояние изученности вопроса и обоснование задач исследований» анализируются результаты исследований качественных показателей полива дождевальных машин, среднеструйных дождевальных аппаратов и других дождевателей. Проведен анализ конструкций и эффективность работы устройств приповерхностного дождевания для многоопорных дождевальных машин. Выявлены основные факторы, влияющие на улучшение качественных показателей полива, обеспечивающие повышение устойчивости полета струй и площадь полива при ветре, снижающие энергетическое воздействия дождя на почву и повышающие норму полива до стока. Большой вклад

в разработку, исследование и научное обоснование работы дождевальных машин и различных дождевателей внесли ученые: Б.М. Лебедев, В.Ф. Носенко, А.П. Исаев, Ф.И. Колесников, С.Х. Гусейн-Заде, А.И. Рязанцев, К.В. Губер, Г.В. Ольгаренко, М.С. Григоров, Ю.И. Гринь, И.П. Кружилин, Н.С. Ерхов, В.И. Ольгаренко, В.М. Марквартде, С.М. Васильев, Н.П. Бредихин, Б.П. Фокин, Д.П. Гостищев, Г.П. Лямперт, С.П. Ильин, П.И. Кузнецов, Н.Ф. Рыжко, Ю.Ф. Снипич, Н.Е. Чубиков и др., а также зарубежные исследователи Н. Ниmmel, К. Solomon, И. Варлев, S. Okamura, М. Lateska, Т. Эйлер и др.

Показано, что создание новых обоснованных принципов совершенствования дождеобразующих устройств, позволяющих существенно улучшить качественные показатели полива и повысить производительность дождевальных машин, являются актуальной проблемой, решение которой имеет важное значение.

**Во второй главе** «Теоретическое обоснование снижения потерь воды на испарение и снос при поливе ДМ «Фрегат», мы исходим из того, что испарение является процессом диффузии молекул воды в окружающую среду. Процесс медленного (квазистационарного) испарения однокомпонентной капли в неподвижном воздухе при давлении, близком к атмосферному, хорошо описан в работах Дунского В.Ф., Федоренко И.Д., Сивухина Д.В. и др. Диффузионный поток пара воды капли (*I*) через сферическую поверхность радиусом (*r*) при стационарном испарении согласно Максвела есть величина постоянная:

$$I = -4\pi Dr^2 \frac{dC}{dr} \tag{1}$$

где D – коэффициент диффузии пара в окружающем каплю воздухе, см $^2$ /с; C – концентрация пара, г/см $^3$ ; r – радиус капли, мм.

Исследованиями Е.Г. Зака получена формула полного испарения капли дождя в зависимости от дефицита влажности воздуха (Д, мм), диаметра капли (d,  $_{\rm MM}$ ) и времени её полета (t, c), скорости ветра ( $V_{\rm B}$ ). Для расчета величины испарения капли  $E_{\rm H}$  широко используется формула Федоренко И.Д., которая получена от преобразования формулы Е.Г. Зак

$$E = 100 \cdot \left[ 1 - \left( 1 - \frac{\mathcal{I} \cdot t \cdot (1 + 1.92 \cdot V_g)}{10584 \cdot d^2} \right)^{1.5} \right]. \tag{2}$$

Разработана программа расчета на ПК времени полета капель дождя, объема поданной воды и потерь воды на испарение для капель определенного размера и в целом, для отдельного дождевателя. Исследования и расчеты показывают, что значительно испаряются мелкие капли близкие к водяной пыли 0,1...0,3 мм. Расчеты  $E_{\rm u}$  по этой программе для устройств приповерхностного дождевания с дефлекторными насадками

(УПД-ДН) показаны на графике (рисунок 2). Расчеты показывают, что величину испарения можно значительно снизить за счет уменьшения высоты установки дождевателя над поверхностью почвы и оптимизации структуры дождя.

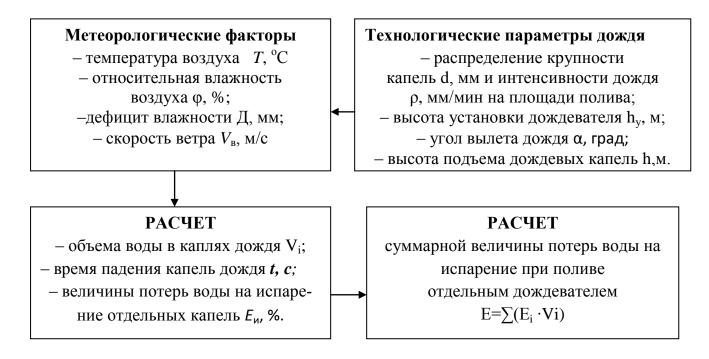



Рисунок 1 — Последовательность расчета величины испарения при поливе дождевателем

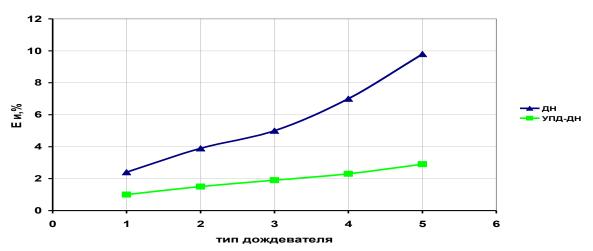



Рисунок 2 — Экспериментальные значения потерь воды на испарение  $E_{\rm u}$  при поливе отдельным дождевателем (ДН) и с устройством приповерхностного полива (УПД ДН)

Очень важным показателем при работе дождевальных машин является величина потерь воды на испарение и снос  $E_{\rm uc}$ . Фактически при работе дождевальной машины на  $E_{\rm uc}$  оказывает влияние не только метеорологические параметры, такие как температура воздуха t, относительная влажность воздуха  $\varphi$ , скорость ветра  $V_{\rm B}$ , но и технические параметры машины: высота подъема дождевого облака h; диаметр капель дождя  $d_{\rm k}$ ; средняя и мгновенная интенсивность дождя  $\rho_{\rm cp}$ ,  $\rho_{\rm MF}$ . Это хорошо видно на представленных

графиках, построенных по экспериментальным данным наших замеров и других исследований.

Для оценки величины испарения и сноса дождя  $E_{\rm ис}$  при поливе исследовались как одиночные дождевальные аппараты и насадки, так и машины «Фрегат». Для расчета  $E_{\rm ис}$  были использованы опытные данные М.С. Мансурова, А.П. Клепальского, К.М. Мустафаевой, Е.Г. Петрова, В.Е. Хабарова и др. Величина  $E_{\rm ис}$  при поливе отдельным аппаратом или дефлекторной насадкой увеличивается с повышением температуры воздуха (t) и скорости ветра  $(V_{\rm B})$  и уменьшается с увеличением относительной влажности воздуха  $(\varphi)$ , зависит от комплексного показателя напряженности климата  $\Phi$  по В.Е. Хабаров:

$$\Phi = t(1 - \frac{\varphi}{100})(V_{_{g}} + 1), \tag{3}$$

где t — температура воздуха, °C;  $\varphi$ — относительная влажность воздуха, %;  $V_{\rm B}$  — скорость ветра, м/с.

При поливе дождевальными машинами величина  $E_{\rm uc}$  зависит от направления ветра относительно трубопровода машины. Если направление ветра перпендикулярно оси трубопровода ( $\alpha$ =90°), то величина  $E_{\rm uc}$  максимальная, а при направлении ветра вдоль трубопровода ( $\alpha$ =0°) — минимальная.

Расчеты по полученной зависимости показали, что  $E_{\rm uc}$  может достигать 20-30 и 40 % (рис.3). Видно, что имеется возможность уменьшения  $E_{\rm uc}$  за счет снижения параметра  $K_{\rm T}$  – высоты подъема и оптимизации технологических параметров дождевого облака

$$K_T = \frac{h^{0.6} \cdot (n+1)^{0.08}}{d^{0.6} \cdot \rho_c^{0.2} \cdot \rho_M^{0.1}}.$$
(4)

Изменение величины испарения  $E_{\rm uc}$  в зависимости от комплексного метеорологического фактора  $\Phi$  и комплексного технологического параметра дождевальной машины  $K_{\rm T}$  показано на рисунке 3.

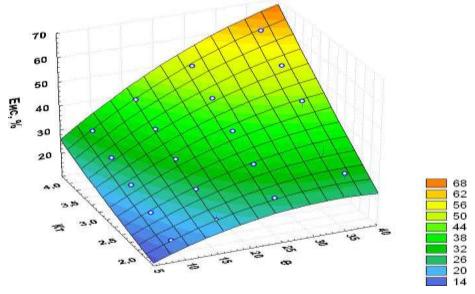



Рисунок 3 — Экспериментальные значения потерь воды  $E_{uc}$  при поливе ДМ «Фрегат» в зависимости от технологического параметра  $K_{\scriptscriptstyle {\rm T}}$ 

)

На основании исследований нами получена формула для расчета величины испарения и сноса дождя  $E_{\rm uc}$  при дождевании одиночным дождевальным аппаратом, дефлекторной насадкой или машиной с учетом метеорологических факторов и технологических параметров дождя:

$$E_{uc} = 2,67 \frac{h^{0.6} \cdot (n+1)^{0.08} \cdot \Phi^{0.5} \cdot K_{\alpha}}{d^{0.6} \cdot \rho_c^{0.2} \cdot \rho_{\alpha}^{0.1}},$$
(5)

где h – высота подъема капель дождя над почвой, м;

n — частота вращения аппарата, об./мин;

 $d_{\kappa}$  – средний диаметр капель, мм;

 $\rho_{\rm c}, \, \rho_{\rm M}$  – средняя и мгновенная интенсивность дождя, мм/мин;

 $K_{\alpha}$  – коэффициент, учитывающий изменение величины испарения и сноса дождя в зависимости от величины угла между трубопроводом машины «Фрегат» и направлением ветра  $K_{\alpha}$  = 1 – 0,009(90 –  $\alpha$ ).

Для повышения равномерности полива нами проанализирован полет капель дождя при различных значениях скорости ветра. Определены четыре модели полета капли в зависимости от скорости ветра. Анализ этих зависимостей позволил определить способы повышения ветроустойчивости струи, которые зависят от высоты подъема дождевого облака, высоты установки дождевателя, а также за счет оптимизации параметров дождевого облака. Уменьшение высоты установки дождевальной насадки с 2,5 м (max) до 0,6 м (min) позволит на 10–15 % увеличить площадь полива при скорости ветра 4 м/с.

Оптимальный диаметр капли ( $d_{\text{кап}} = 1,0-1,5$  мм) при ветре позволяет повысить площадь полива и уменьшить долю сноса водяной пыли.

С целью оптимизации распыла, а также высоты установки дождевателя разработано УПД рычажного типа (рисунок 4, Пат. 74033), состоящее из поворотного рычага с хомутом 2, напорного рукава 1, угольника 3 с дефлекторной насадкой 4 (рисунок 4).

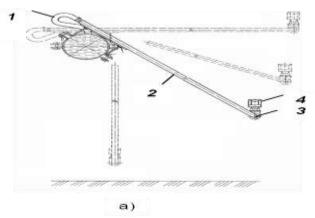



Рисунок 4 — Устройство приповерхностного дождевания рычажного типа с дефлекторной насадкой

Уменьшение энергетического воздействия дождя на почву достигается за счет уменьшения средней интенсивности дождя путем разноса УПД с дождевателями и расстановке их на трубопровод дождевальной машины в шахматном порядке. Формула для расчета средней интенсивности дождя на пролете при разносе дождевателей имеет вид

$$\rho_{cp} = \frac{60q_{np}}{L_{np}(2R + 2L_{v})} = \frac{30q_{np}}{L_{np}(R + L_{v})},\tag{6}$$

где  $q_{\rm np}$  – расход воды на пролете, л/с;  $L_{\rm np}$  – длина пролета, м;

 $L_{\rm y}$  – длина выноса устройств приповерхностного дождевания от трубопровода машины, м; R – радиус полива дождевателем, м;

Уменьшение интенсивности дождя способствует расширение зоны полива за счет разноса поворотных рычагов на величину  $2L_{\rm v}$ .

**В третьей главе** «Программа и методика экспериментальных исследований» приводятся программа и методика экспериментальных исследований устройств приповерхностного дождевания со специальными дефлекторными насадками и ДМ «Фрегат», обеспечивающих приповерхностное дождевание.

Для оценки качественных показателей полива определяли: расход воды дождевателей и машины в целом при различных значениях напора; дальность полета струи и площадь полива; среднюю и действительную интенсивность дождя; крупность капель дождя; потери воды на испарение и снос; достоковую поливную норму; равномерность полива; влажность почвы; урожайность сельскохозяйственных культур и др. Эти наблюдения и исследования выполняли в соответствии с требованиями РД 70.11.1—89 «Машины и установки дождевальные. Урожайность сельскохозяйственных культур определяли по методике Б.А. Доспехова.

Схема опыта по изучению влияния качественных показателей полива различных дождеобразующих устройств на урожайность культур включала следующие варианты: 1. Контроль – серийные дождевальные аппараты «Фрегат» № 1—4, (СДА); 2. Устройства приповерхностного дождевания с дефлекторными насадками (УПД-ДН). Серийные и изучавшиеся в опыте дождеватели размещались на одной дождевальной машине группами по 7—10 шт. Учетные площадки размещали в середине группы дождевателей, чтобы исключить влияние соседних.

Обработку данных проводили методами дисперсионного и регрессионного анализа. Оценку экономической эффективности проводили в соответствии с РД-АПК 300.01.003-03 «Методические рекомендации по оценке эффективности инвестиционных проектов мелиорации земель».

**В четвертой главе** «Результаты исследований устройств приповерхностного дождевания с дефлекторными насадками на ДМ «Фрегат» приведены результаты лабораторных испытаний устройств приповерхностного дождевания с дефлекторными насадками, а также полевых исследований при их установке на ДМ «Фрегат».

Оптимизация параметров дефлекторных насадок по расходу показала, что при увеличении диаметра сопла с 4 до 16 мм и напора с 0,1 до 0,3 МПа, расход воды увеличивается с 0,1 до 4,1 л/с и соответствует расходу серийных дождевальных аппаратов № 1, 2, 3 и 4. В результате лабораторных и полевых исследований установлено, что расход воды дождевальными насадками при установке на УПД отличается от варианта установки в трубопровод машины и увеличивается на 4,9 %. Формула расхода при этом имеет вид:

$$q = \frac{D^2 H^{0.5}}{315} \tag{7}$$

где q – расход воды л/c; D – диаметр насадки, мм; H – напор струи воды, МПа.

Исследования устройств приповерхностного дождевания изготовленных из труб диаметром 15, 20 и 25 мм (I и IV тип) показали, что потери напора по длине увеличиваются с повышением расхода воды и уменьшения диаметров труб (рисунок 5). При увеличении расхода воды до 0.7~п/c, проходящего через УПД I типа Ø 15 мм, до 0.7~n/c,

потери напора возрастают до 4 м. При увеличении расхода воды, проходящего через УПД (I тип), до 1 л/с, потери напора по его длине увеличиваются до 7 м. Для УПД (II и III тип) при таком же расходе воды, потери напора ниже и составляют соответственно 6 и 4 м.

Установлено, что при расходе воды q = 0,7...1,3 л/с необходимо использовать УПД (II тип) с Ø 20 мм. При q > 1,3...2,0 л/с необходимо использовать устройства приповерхностного дождевания с Ø 25 мм (III и IV тип). Минимальные потери напора по длине УПД имеют устройства 4 типа, где использовалась труба диаметром 25 мм. В этом случае рабочий расход воды увеличивается до 1,5...2 л/с, а потери напора находятся в пределах 3...5 м. Для расчета потерь напора по длине УПД необходимо использовать эмпирическую зависимость:

$$\Delta h = \mathbf{a} \cdot \mathbf{q}^{\mathrm{B}}, \tag{8}$$

где q – расход воды насадкой, л/с; a и b – эмпирические коэффициенты. a = 7; b = 2,058 – для УПД (I тип); a = 5,8; b = 1,97 – для УПД (II тип); a = 4; b = 1,72 – для УПД (III тип); a = 1,45; b = 1,469 для УПД (IV тип).

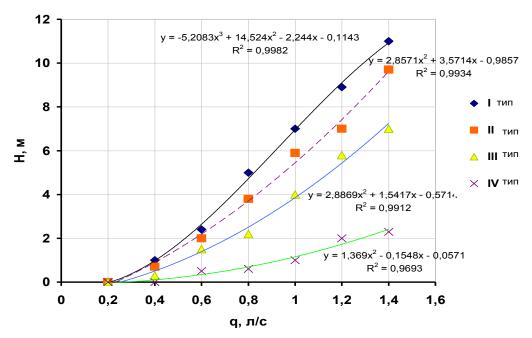



Рисунок 5 — Экспериментальные значения потерь напора по длине устройства приповерхностного дождевания (I, II, III и IV типа) в зависимости от расхода воды

При снижении высоты установки дефлекторной насадки радиус полива уменьшается незначительно. Формула для определения дальности полета струи (R) в зависимости от диаметра сопла D, м, рабочего напора H, МПа и высоты установки дождевателя h, м имеет вид:

$$R = \frac{(0.92 + 0.02h)H}{(0.695 + 0.000942\frac{H}{I})}.$$
(9)

Максимальный радиус захвата дождем дефлекторной насадки при изменении диаметра сопла от 4 до 16 мм и напоре 0,3 МПа увеличивается от 4,0 до 11,8 м. Чтобы обеспечить хорошую равномерность при поливе дефлекторными насадками УПД на пролетах устанавливают по учащенной схеме (через 5 и 6 м). Величина перекрытия

струй  $(R/\ell)$  в начале дождевальной машины выше, чем у среднеструйных аппаратов (рисунок 6). Это способствует повышению равномерности полива ДМ «Фрегат».

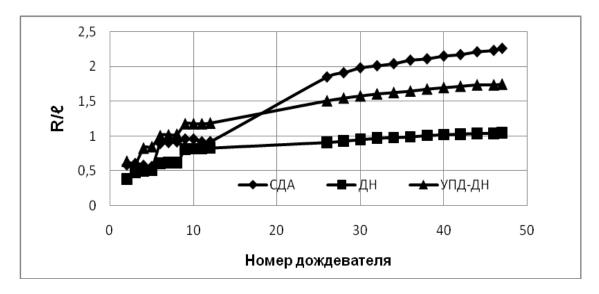



Рисунок 6 — Экспериментальные значения величины перекрытия струй  $R/\ell$  вдоль трубопровода ДМ «Фрегат» с различными типами дождевателей

Во второй половине трубопровода ДМ «Фрегат» величина перекрытия струй увеличивается до 1,5. В тоже время при обычной установке дефлекторных насадок на трубопроводе перекрытие достигает максимума 0,9...1,05.

Установка дефлекторных насадок на УПД с рычагами длиной 2 м способствуют снижению средней интенсивности дождя по сравнению с ДН, устанавливаемыми на трубопроводе машины. Мгновенная интенсивность дождя у дефлекторных насадок изменяется вдоль трубопровода в пределах 0,3...0,6 мм/мин, что в 4...5 раз меньше, чем у среднеструйных аппаратов.

Исследования показали, что средний диаметр капель дождя дефлекторных насадок изменяется вдоль трубопровода машины от 0,50 до 0,86 мм и в 1,8–2,0 раза меньше, чем серийных дождевальных аппаратов.

Крупность капель дождя дефлекторных насадок определяется диаметром сопла и напором. Средний диаметр капель дождя дефлекторных насадок увеличивается с возрастанием относительного радиуса полета капель  $R_i/R$ , диаметра сопла и с уменьшением напора перед насадкой. Диаметр капель дождя в i-й точке радиуса действия струи дефлекторной насадки описывается формулой:

$$d_i = d_{\min} + (d_{\max} - d_{\min})(\frac{X_i}{R}) \cdot e^{-0.757(1 - \frac{X_i}{R})}, \tag{10}$$

где  $X_i/R$  — относительная величина радиуса захвата дождем,  $0 \le X_i/R \le 1$ ;  $d_{\min}$  — минимальный диаметр капель в начале струи, мм;  $d_{\min} = 0.274 H^{0.5397} \Pi^{1.07}$ ,  $d_{\max}$  — максимальный диаметр капель в конце струи, мм;  $d_{\max} = 1.558 H^{-0.358} \Pi^{0.490}$ .

Для обеспечения равномерности полива дефлекторных насадок напор должен быть в пределах  $H=0,10...0,25~M\Pi a$ , а относительная величина  $H/\!\!\!/\!\!\!/=0,015...0,025M\Pi a/\!\!\!/\!\!\!/ MM$ .

На основании проведенных исследований разработаны карты настройки УПД с дефлекторными насадками для ДМ «Фрегат» различных модификаций, работающих как при штатном напоре, так и при пониженном напоре.

Результаты испытаний ДМ «Фрегат» различных модификаций (9, 12, 13, и 16-ти опорных) с УПД в ОПХ «ВолжНИИГиМ», ЗАО Агрофирма «Волга» и ООО «ВИТ» показали, что расход воды машин соответствует паспортным данным.

Установка дождевателей на высоте 0,6 м от поверхности почвы уменьшает высоту подъема дождевого облака. Это повышает устойчивость струй к ветру. Исследования ДМ «Фрегат» с УПД, оборудованных дефлекторными насадками показывают, что равномерность полива при ветре 3...4 м/с находится на хорошем уровне 0,68...0,75, что выше на 15...20 %, чем при поливе ДН, устанавливаемыми в стандартные штуцера (рисунок 7).

Равномерность полива обеспечивается снижением сноса дождя, большой надежностью работы УПД с дефлекторными насадками по сравнению с ДН.

Исследования показывают, что при средних метеоусловиях для Саратовской области ( $T=17,4^{\circ}$ С,  $\varphi=59$  %,  $V_{B}=3,8$  м/с) величина  $E_{uc}$  ДН изменяется вдоль трубопровода в пределах 10,4-22,3 % (рисунок 8, ДН), а для УПД-ДН она уменьшается до 6,0-14,3 % или в 1,5-1,8 раза. Снижение величины потерь воды при поливе ДМ «Фрегат» с УПД обусловлено снижением сноса дождевого облака и оптимизации факела распыла.

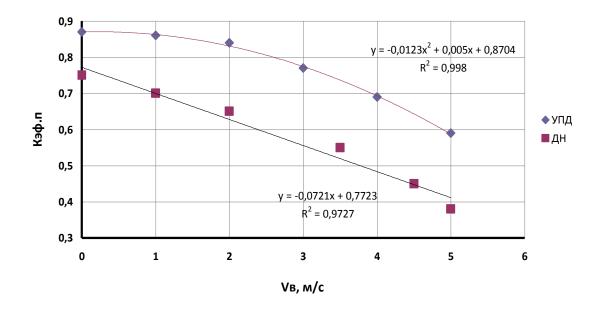



Рисунок 7 – Экспериментальные значения коэффицента эффективного полива ДМ «Фрегат» в зависимости от скорости ветра для дефлектроных насадкок, установленных в стандартные штуцера (ДН) и устройствами приповерхностного дождя (УПД-ДН)

Результаты испытаний ДМ «Фрегат» с УПД оборудованными ДН показывают, что средняя крупность капель, мгновенная интенсивность и мощность дождя меньше, чем у ДН. Наиболее важным показателем дождя является комплексный энергетический показатель дождя (ЭПД), который учитывает крупность капель, среднюю и мгновенную интенсивность дождя. Минимальные значения ЭПД отмечены у дефлекторных насадок и

изменяются вдоль трубопровода ДМ «Фрегат» в пределах 0,04...0,44 (рисунок 9). Для дождевальных аппаратов № 1 и 2 ЭПД находится в диапазоне 0,2...0,6.

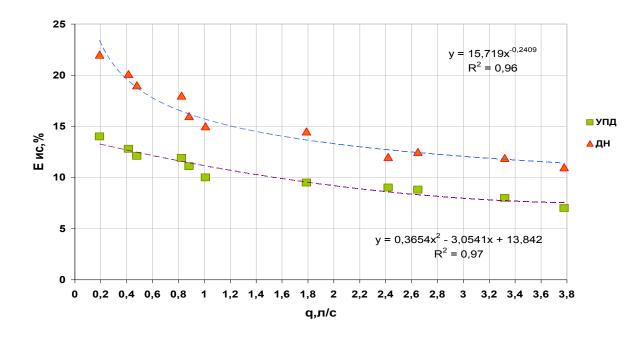



Рисунок 8 — Величина испарения и сноса дождя  $E_{\rm ис}$  вдоль трубопровода ДМ «Фрегат» ДН и УПД-ДН при средних показателях напряженности климата Ф

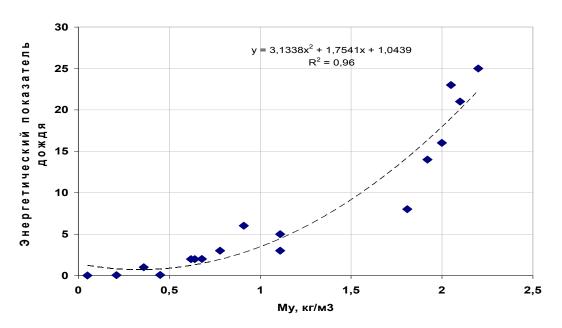



Рисунок 9 — Экспериментальные значения удельной массы разбрызгиваемой почвы в зависимости от энергетического показателя дождя при поливе ДМ «Фрегат»

Большие значения ЭПД (0,8...2,2) имеют аппараты № 3, 4 и 5 (больше на 20–70 %). Результатом снижения ЭПД является уменьшение энергетического воздействия дождя на почву, при этом снижается объемная масса верхнего слоя (0–5 см) и уменьшается

удельная масса разбрызгивающей почвы (отношение массы разбрызгивающей почвы в кг на  $1 \text{m}^3$  оросительной воды), что способствует снижению покрытия растений таких как капуста, кабачок и др. мелкоземом.

В пятой главе «Результаты исследований работы модернизированной ДМ «Фрегат» и экономическое обоснование ее использования» приведены замеры влажности почвы в течение поливного сезона в ОПХ «ВолжНИИГиМ» на ДМ «Фрегат» с УПД-ДН и ДН которые показывают, что после каждого полива наблюдается прирост запаса влаги в почве на 7,7–12,0 %. Улучшение качественных показателей полива (повышение равномерности полива, снижение крупности капель дождя и энергетического воздействия на почву, уменьшение потерь воды на испарение и снос) способствует повышению урожайности сельскохозяйственных культур, на 5...24 %, а энергетическая эффективность повышается на 6–16 % (таблица 1).

Таблица 1. Показатели экономической эффективность сельскохозяйственных культур при поливе модернизированной ДМ «Фрегат»

| Показатели                                                 | ООО «ВИТ» |       |
|------------------------------------------------------------|-----------|-------|
| Сельскохозяйственная культура                              | Капуста   |       |
|                                                            | ДН        | УПД   |
| Число поливов                                              | 13        |       |
| Урожайность, ц/га                                          | 850,0     | 895,0 |
| Качественный показатель, %                                 | 84        | 97    |
| Коэффициент эффективного полива при скорости ветра 3,8 м/с | 0,53      | 0,72  |
| Потери воды на испарение и снос, %                         | 16        | 9     |
| Годовой экономический эффект, тыс. руб                     | -         | 347   |

Экономическая эффективность внедрения УПД на ДМ «Фрегат» составляет 347 тыс. руб. в зависимости от культуры.

#### ЗАКЛЮЧЕНИЕ

- 1. На основании анализа и оценки эффективности использования ДМ «Фрегат» теоретически определены потери воды на испарение при поливе с учетом распределения крупности капель и интенсивности дождя на площади полива, высоты установки дождевателя, времени полета отдельных капель дождя и метеорологических условий. Определена зависимость для расчета потерь воды на испарение и снос при поливе различными типами дождевателей с учетом их конструктивно-технологических параметров и метеорологических условий. Доказано, что для снижения потерь воды на испарение и снос необходимо уменьшать высоту подъема дождевого облака и оптимизировать параметры распыла дождевателей.
- 2. Уточнены математические зависимости для расчета расхода воды дефлекторной насадкой установленной на УПД, и радиуса полива в зависимости от диаметра сопла, напора и высоты ее установки. С учетом величины потерь напора по длине УПД при расходе воды дефлекторной насадки 0,1...0,7 л/с, диаметр труб должен быть

15 мм; при расходе 0,7...1,3 л/с, 20 мм; при 1,3...2,0 л/с, 25 мм.

Разработан алгоритм для расчета полета капель дождя в зависимости от скорости и направления ветра, а также крупности капель. Обоснована конструкция устройства при поверхностного дождевания (Пат. 74033) с дефлекторной насадкой. Размещение УПД с дождевальными насадками на трубопроводе ДМ «Фрегат» в шахматном порядке по учащенной схеме обеспечит снижение средней интенсивности дождя на пролетах машины на 15–24 %.

3. На основании исследований установлено, что ДМ «Фрегат» с устройствами приповерхностного дождевания, расположенными по учащенной схеме, обеспечивает требуемый расход воды как при стандартном, так и при низком напоре.

Высота подъема дождевого облака снижается до 1,1...1,7 м над поверхностью поля, что обеспечивает уменьшение потерь воды на испарение и снос вдоль трубопровода машины (при средних погодных условиях Саратовской области) с 10,4–22,5 до 4–10 %. При этом коэффициент эффективного полива, при средней скорости ветра 3...4 м/с для Саратовской области, находится в пределах 0,70...0,75 (повышается на 20–25 %).

- 4. УПД с дефлекторными насадками обеспечивают мелкокапельный дождь, средний диаметр капель которого в начале машины составляет 0,4...0,5 мм, в конце машины -0,9..1,0 мм, скорость падения капель дождя от дождевальных аппаратов вдоль трубопровода машины «Фрегат» изменяется в пределах 6...12 м/с, от дефлекторных насадок она гораздо меньше -3...6 м/с. При таком дожде снижается энергетическое воздействие на почву и сельскохозяйственные растения, уменьшается объемная масса в верхнем слое почвы и масса разбрызгиваемой почвы, что приводит к повышению урожайности сельскохозяйственных культур на 5,0-18,0 %
- 5. Экономическая эффективность от повышения урожайности сельскохозяйственных культур составляет 347 тыс. руб. Дождевальные машины «Фрегат» с устройствами приповерхностного дождевания внедрены в 2 орошаемых хозяйствах Саратовской области. При стоимости одного комплекта УПД с дефлекторными насадками 60 тыс. руб. оборудование окупается в первый год эксплуатации.

#### РЕКОМЕНДАЦИИ

В орошаемых хозяйствах особенно на поливе овощных использовать устройства приповерхностного дождевания с дефлекторными насадками, устанавливаемыми на трубопроводе дождевальной машины «Фрегат» по учащенной схеме. Настройка дефлекторных насадок для серийных и низконапорных машин «Фрегат» должна производиться по разработанным картам для различных модификаций машины.

# ПЕРСПЕКТИВЫ ДАЛЬНЕЙШЕЙ РАЗРАБОТКИ ТЕМЫ

- Разработать автоматизированные системы управления расходом дождевальных насадок для конкретных культур и климатических зон на основе проведения натуральных исследований.
- Установить значения биоклиматических факторов на величину испарения применительно к приповерхностному поливу сельскохозяйственных культур.

## СПИСОК РАБОТ, ОПУБЛИКОВАН-ПО ТЕМЕ ДИССЕРТАЦИИ

#### В рецензируемых научных изданиях

- 1. Надежкина Г.П. Результаты исследований устройств приповерхностного дождя на ДМ «Фрегат» // «Научное обозрение». 2011. № 5. С. 192-197.
- 4. Надежкина Г.П.Пути совершенствования дождевателей ДМ «Фрегат» / Надежкина Г.П., Н. Ф. Рыжко, В.В. Слюсаренко // «Научное обозрение». -2011. -№ 6. -С. 31–34.
- 2. Рыжко Н.Ф.,. Ресурсосберегающие технологии полива ДМ «Фрегат» фронтального передвижения / Рыжко Н.Ф., Шушпанов И.А., Горбачев А.С., Надежкина Г. П // Вестник Саратовского госагроуниверситета им .Н .И. Вавилова. − 2011. № 7. С. 56-60.
- 3. Рыжко Н.Ф. Повышение ветроустойчивости струй дождевателей ДМ «Фрегат» / Рыжко Н.Ф., Слюсаренко В.В., Надежкина Г. П. // «Научное обозрение». 2012. № 2. С. 256–262.
- 5. Рыжко Н.Ф. Резервы экономии электроэнергии на насосной станции при работе с низконапорными ДМ «Фрегат» / Рыжко Н.Ф., Слюсаренко В.В., Надежкина Г. П. // «Научное обозрение». -2013. -№ 10. -C.20–28.

#### Патент

6. Патент на полезную модель 74033 Российская Федерация Дождевальная машина/ Слюсаренко В. В., Рыжко Н. Ф., Гуркин Е. И., Надежкина Г. П., Рыжко С. Н., Марьин М. П.; заявитель и патентообладатель ФГБОУ ВПО «Саратов. ГАУ». — № 2008105594/22; заявл.13.02.08; опубл. 20.06.08, Изобретения. Полезные модели. № 30. — 5 с.: ил.

# Статьи в журналах, тематических сборниках и материалах научных конференций

- 7. Надежкина, Г. П. Анализ исследований дождевальной машины «Фрегат» и обоснование применения устройств приповерхностного дождевания / Г. П. Надежкина //Проблемы научного обеспечения сельскохозяйственного производства и образования: сб. науч.тр. Саратов : ООО Издательство «Научная книга», 2008. С.165–167.
- 8. Надежкина  $\Gamma$ . П. Определение потери на испарение и снос дождя при поливе ДМ «Фрегат» с дефлекторными насадками /  $\Gamma$ . П. Надежкина // Проблемы научного обеспечения сельскохозяйственного производства и образования: сб. науч. тр. Саратов: ООО Издательство «Научная книга», 2008. С. 168–169.
- 9. Рыжко, Н.Ф. Результаты исследований ДМ «Фрегат» с устройствами приповерхностного дождевания / Н. Ф. Рыжко, Г. П. Надежкина // Аграрная наука в XXI веке: проблемы и перспективы : материалы III Всероссийской научно-практичсекой конференции. Саратов ИЦ «Наука», 2009. С. 302–305.
- 10. Надежкина, Г. П. Технологический процесс дождевания / Г.П. Надежкина // Совершенствование конструкций и методов расчета строительных, дорожных машин, машин для природообустройства и технологий производства работ: сб. науч. тр.— Саратов: Издательство СГТУ, 2010. С. 44—46.

- 11. Слюсаренко В.В., Надежкина Г.П. Основные требования к орошению и машин для его осуществления / В. В. Слюсаренко, Г. П. Надежкина // Совершенствование конструкций и методов расчета строительных, дорожных машин, машин для природоустройства и технологий производства работ : сб. науч. тр. Саратов : Издательств СГТУ, 2010. С. 46—49.
- 12. Надежкина Г. П. К вопросу повышения эффективности использования устройств приповерхностного дождевании / Г.П. Надежкина // Основы рационального при родопользования : материалы III Международной научно-практической конференции. Саратов : Типография ЦВП «Саратовский источник, 2011. С. 273–278.
- 13. Рыжко Н.Ф., Мазнева Л.Н., Гуркин Е.И., Надежкина Г.П., Рыжко С.Н.: Использование компьютерных технологий для улучшения качества полива дождевальных машин Н. Ф. Рыжко, Л. Н. Мазнева, Е. И. Гуркин, Г. П. Надежкина, С. Н. Рыжко // Проблемы повышения эффективности использования водных и земельных ресурсов Поволжья: сб. науч. тр. посвящен 45-летию ФГНУ «ВолжНИИГиМ» Саратов: Орион, 2011. С. 56—67.
- 14. Рыжко Н.Ф., Шушпанов И.А., Горбачев А.С., Рыжко Н.В., Марьин М.П., Гуркин Е.И., Надежкина Г. П. Совершенствование дождеобразующих устройств для дождевальных машин типа «Фрегат» / Н.Ф. Рыжко, И. А. Шушпанов, А. С. Горбачев, Н. В. Рыжко, М. П., Е. И. Гуркин, Г. П. Надежкина // Проблемы повышения эффективности использования водных и земельных ресурсов Поволжья: сб. науч. тр. посвящен 45-летию ФГНУ «ВолжНИИГиМ» Саратов: Орион, 2011. С. 68 –77.
- 15. Рыжко Н.Ф., Слюсаренко В.В., Надежкина Г. П. Снижение потерь воды при поливе дождеванием // «Научная жизнь». -2013. -№ 6. C. 57–61.

Подписано в печать 09.10.14. Формат 60х84. Бумага офсетная. Гарнитура Times.

Рормат 60х84. Бумага офсетная. Гарнитура Times. Печ. л. 1,0. тираж 100. Заказ №43/43