Министерство сельского хозяйства Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего образования «Саратовский государственный аграрный университет имени Н.И. Вавилова»

БИОТЕХНОЛОГИЯ В КОРМОПРОИЗВОДСТВЕ

учебно-методическое пособие для практических занятий

для магистров I курса

Направление подготовки **36.04.02 Зоотехния**

Профиль подготовки Технология производства продуктов животноводства

Рецензенты:

Заведующая кафедрой «Экология», доктор биологических наук, профессор ФГБОУ ВО «Саратовской государственный технический университет имени Гагарина Ю.А.» $E.И.\ Тихомирова$

Доцент кафедры «Кормление, зоогигиена и аквакультура», кандидат сельскохозяйственных наук, доцент ФГБОУ ВО Саратовский ГАУ Л.А. Сивохина

Биотехнология в кормопроизводстве: учебно-методическое пособие для Φ_{28} практических занятий для студентов I курса направления подготовки 36.04.02 зоотехния / Сост.: Е.А. Фауст // ФГБОУ ВО Саратовский ГАУ. — Саратов, 2015.-51 с.

Учебно-методическое пособие по дисциплине «Биотехнология в кормопроизводстве» составлено в соответствие с рабочей программой дисциплины и предназначено для студентов направления подготовки 36.04.02 Зоотехния. Пособие содержит теоретический материал по основным вопросам биотехнологии в области кормопроизводства, рассмотрены биотехнологические методы, приемы и средства для более рационального использования кормов и повышения продуктивности сельскохозяйственных животных, а также лабораторные работы профессиональной направленности. Пособие направлено на формирование у студентов знаний о роли, значении и месте биотехнологии в сельском хозяйстве, в частности, в комопроизводстве, а также в усовершенствовании методов производства кормов и животноводческой продукции.

УДК 575 ББК 30

[©] Фауст Е.А., 2015

[©] ФГБОУ ВО Саратовский ГАУ, 2015

Введение

В настоящее время биотехнология приобретает все более важную роль в повышении доходности животноводства. Это – диагностика, профилактика и лечение заболеваний с использованием техники моноклональных антител; генетическое улучшение пород животных. Биотехнологические методы широко используются для искусственного осеменения. Биотехнология применяется для силосования кормов, позволяя повышать усвоение растительной биомассы; для утилизации отходов животноводческих ферм; для получения экологически чистых органических удобрения на основе переработки отходов растениеводства и животноводства. Некоторые вещества, полученные с помощью микроорганизмов, могут использоваться в виде кормовых добавок, другие – подавляют вредную микрофлору в желудочно-кишечном тракте или стимулируют образование специфических микробных метаболитов.

Биотехнология животных включает в себя работу с различными животными (скотом, домашней птицей, рыбой, насекомыми, домашними животными и лабораторными животными) и исследовательскими приемами — геномикой, генной инженерией и клонированием.

Учебно-методическое пособие лисциплине «Биотехнология ПО кормопроизводстве» раскрывает основные направления биотехнологии в области животноводства, на которых базируются ее современные аспекты и особенности их использования в профессиональной деятельности. Курс нацелен на формирование у студентов навыков выбора биотехнологических методов, приемов и средств организации и ведения животноводческого производства, в том числе и для более рационального продуктивности использования кормов повышения сельскохозяйственных животных.

Тема 1

ВВЕДЕНИЕ В ДИСЦИПЛИНУ. ПРОИЗВОДСТВО КОРМОВОГО БЕЛКА

ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

1.1. Значение биотехнологии для кормопроизводства

Биотехнология — это совокупность промышленных методов, в которых используют живые организмы и биологические процессы для производства различных продуктов.

Кормление сельскохозяйственных животных должно обеспечить максимальную, генетически обусловленную продуктивность при сохранении их здоровья и воспроизводительной функции.

В настоящее время в кормлении животных используют более 500 видов различных кормов и кормовых добавок: отходы маслоэкстракционной и пищевой промышленности; продукты микробиологического синтеза; соли макро- и микроэлементов; препараты витаминов, ферментов, аминокислот, антибиотиков, транквилизаторов, сорбентов, антиокислителей, вкусовых средств и др.

По источникам получения все корма подразделяют на корма растительного происхождения, корма животного происхождения, минеральные корма, продукты микробиологического происхождения, продукты пищевой промышленности, продукты химического синтеза.

Так, например, урожайность сельскохозяйственных растений, в т.ч. и кормовых, зависит от погодных и климатических условий, состояния почвы, наличия сорняков, грызунов, действия насекомых-вредителей, нематод, фитопатогенных грибов, бактерий, вирусов и др.

Биотехнология открывает новую сферу деятельности в области кормопроизводства:

- выведение сортов растений, устойчивых к неблагоприятным факторам;
- разработка химических средств борьбы с сорняками, грызунами, фитопатогенными грибами, бактериями и вирусами;
 - разработка биотехнологических средств борьбы с вредителями;
 - получение бактериальных удобрений;
 - разработка микробиологических методов рекультивации почв;
 - получение трансгенных растений;
- создание кормовых препаратов из растительной, микробной биомассы и отходов сельского хозяйства;
 - переработка отходов и побочных продуктов растениеводства.

1.2. Нетрадиционные источники кормового белка

При дефиците белка в рационе в организме животных развиваются глубокие негативные изменения: отрицательный азотистый баланс, гипопротеинемии, нарушения коллоидно-осмотического и водно-солевого обмена, анемии различной формы, нарушения со стороны нервной, эндокринной и сердечно-сосудистой системы, сдвиги обмена веществ, остановка роста, истощение и т.д. Особенно тяжелые нарушения развиваются в молодом возрасте. Весьма опасно не только полное отсутствие белка в пище, но и недостаточное поступление его в организм или поступление некачественного белка. Белок корма должен содержать все аминокислоты, особенно незаменимые, быть по

составу близок аминокислотному составу белков организма и легко перевариваться в желудочно-кишечном тракте.

Недостаток кормового белка в масштабах планеты по данным ФАО ООН оценивается примерно в 30 млн т в год. Коренным образом изменить эту ситуацию возможно лишь биотехнологическим путем. Причем, продуцентами кормового белка могут быть бактерии, дрожжи, микроскопические водоросли, микро- и макромицеты.

Преимущества производства биомассы с помощью микробного синтеза (перед другими источниками белка): 1) высокая скорость накопления биомассы, которая в 500 - 5000 раз выше, чем у растений или животных; 2) микробные клетки накапливают большое количество белка (дрожжи – до 60 %, бактерии – до 75 % по массе); 3) в производстве микробного белка отсутствует многостадийность; 4) процесс биосинтеза протекает в мягких условиях при температуре 30 - 45°C, рН 3 - 6 и давлении \approx 0,1 МПа; 5) процесс менее трудоемок по сравнению с получением сельскохозяйственной продукции и органическим синтезом белков.

Дрожжи. Их легко выращивать в производственных условиях; они быстро растут и размножаются практически на любых субстратах; устойчивы к контаминантной микрофлоре; содержат белка больше, чем зерно злаковых культур, несколько уступая лишь по аминокислотному составу протеину молока и рыбной муки; богаты витаминами (тиамин, рибофлавин, пантотеновая кислота, никотиновая кислота, пиридоксин, фолиевая кислота, а также холин, инозит и др.); содержат микроэлементы и значительное количество жира, в котором преобладают ненасыщенные жирные кислоты. Так, 1 кг кормовых дрожжей содержит 1,03 - 1,16 кормовых единиц. К недостаткам дрожжей относят толстую клеточную стенку и большое количество нуклеиновых кислот.

Бактерии. Для них характерна высокая скорость роста; содержание белка в биомассе составляет 70 - 80 % при значительном количестве метионина; они легко поддаются селекции, что позволяет получать высокопродуктивные штаммы. Их недостатками являются трудная осаждаемость, вследствие малых размеров клеток; значительная чувствительность к инфекциям, особенно фаговым; высокое содержание в биомассе нуклеиновых кислот.

Водоросли. Микроскопические водоросли как фототрофы для образования своей биомассы используют только углекислый газ атмосферы. Так, с 0,1 га поверхности прудов можно получить столько же белка, сколько с 14 га посевов фасоли. В настоящее время особое внимание привлекает сине-зеленая водоросль спирулина (Spirulina platensis и Spirulina maxima). Биомасса её соответствует лучшим стандартам пищевого белка, в ней достаточно витаминов А, D, а также группы В. В качестве кормовых добавок применяют также препарат спирустим, изготавливаемый из одноклеточных синезеленых водорослей Spirulina platensis, хлореллу. Новой добавкой к рациону является гипергалинная аквакультура (ГАК) Сиваша, которая включает микроводоросли, продукты их переработки, а также цисты, яйца, личинки, куколки и взрослые формы гидробионтов и галофильных насекомых, которые обитают в акватории высокой солености.

Грибы. Важным источником высококачественного белка могут быть как низшие, так и высшие грибы. Высокая питательная ценность плодовых тел высших грибов известна давно. Однако их валовой сбор в природных условиях, естественно, не может удовлетворить все возрастающие потребности в белке. Поэтому были сделаны попытки культивирования в промышленных условиях мицелия макромицетов. Благодаря микромицетам крахмалсодержащая пища обогащается белком и становится подобной мясным продуктам. Однако, по сравнению с эталонным белком, белки грибов лимитирова-

ны по сумме аминокислот, содержащих серу (цистеин и метионин). Вместе с тем они богаты лизином – основной аминокислотой, недостающей в белке зерновых культур. Это позволяет на основе зерна и грибной биомассы составлять сбалансированные кормовые смеси.

1.3. Сырьевая база для синтеза комового белка

Сырьевые источники для синтеза микробного белка весьма значительны и легко доступны. Для получения микробного белка необходим богатый углеродом, но дешевый субстрат.

Парафины нефти (н-парафины). Высокий выход биомассы (до 100 % от массы субстрата) обеспечивается большим содержанием углерода, а качество продукта — степенью чистоты парафинов. Если парафины очищены недостаточно, то дрожжевая биомасса содержит неметаболизируемые компоненты: производные бензола, D-аминокислоты, липиды с нечетным числом углеродных атомов в жирных кислотах, токсины белковой природы. Поэтому парафины нефти должны быть тщательно очищены. Дрожжи, выращенные на н-парафинах, используются в количестве 8 - 15 % от общего белка рациона для откорма крупного рогатого скота, свиней, овец и бройлеров.

Метанол. Его получают методом микробного синтеза из древесины, соломы, городских отходов. Сложность использования метанола заключается в том, что молекула его содержит только один атом углерода, тогда как синтез большинства органических соединений осуществляется через двухуглеродные молекулы. Соединения же с нечетным числом атомов углерода, как правило, небезразличны для организма. В качестве продуцента используются бактерии рода *Methylomonas*. Метанол усваивают бактерии, дрожжи, грибы, актиномицеты. Получение белка на метаноле более экономично, чем при использовании н-парафинов. Например, продукт «Прутин» (Англия), содержащий 72 % сырого протеина, используется как высокобелковая добавка к комбикормам в рационах свиней, птицы, пушных зверей и в качестве заменителя молока для телят.

Этанол. Использование этанола как субстрата для микробного синтеза белка снимает проблему очистки биомассы от аномальных продуктов обмена с нечетным числом углеродных атомов. Стоимость производства этанола несколько выше, чем метанола. Разработаны технологические процессы получения белка на природном газе с использованием бактерий *Methylomonas*, усваивающих метан, *Hypomicrobium* и *Pseudomonas*, утилизирующих метанол и др.

Растительная биомасса. Содержит большое количество сахаров (целлюлоза, состоящая из остатков молекулы глюкозы; гемицеллюлозы, состоящие из остатков арабинозы, галактозы, маннозы, фруктозы, ксилозы). На жидкой, содержащей сахара фракции гидролизата, выращивают дрожжи. Для получения кормовых дрожжей используется также послеспиртовая барда, подсолнечная лузга, хлопковая шелуха, отходы производства лубяных волокон (костер льна и конопли), свекловичный жом, отходы картофелекрахмального производства, пивоваренной, плодовоовощной, консервной промышленности и др. В качестве сырья для гидролизной промышленности используется солома злаковых культур, которая обычно протеинизируется, например, дрожжеванием, или усвояемость соломы повышается действием ферментных препаратов (пектофоетидина ГЗх в комплексе с целловиридином ГЗх или глюкаваморином Пх). Используются способы прямой биоконверсии растительной биомассы с помощью высших и низших грибов. С этой целью используются целлюлозоразрушающие грибы *Chaetomium cellulolyticum*, а также *Aspergillus niger, Trichoderma* и др.

Молочная сыворотка. Ежегодно в мире образуется около 200 млн. т молочной сыворотки. Каждая тонна сыворотки содержит 50 кг молочного сахара, до 10 кг высокоценного белка, 1,5 кг жира, а также витамины, микроэлементы и др. Использование сыворотки малоэффективно как для производства кормов, так и для скармливания животных. Это связано с тем, что степень утилизации молочной сыворотки снижается по мере увеличения её доли в рационе. Кроме того, при этом возникают расстройства пищеварения, а конверсия белка сыворотки в белок тела животного весьма незначительна. Это касается и сухой сыворотки, так как организм животного усваивает только 20% её количества из-за неблагоприятного соотношения углеводов, белков и минеральных солей. В этом отношении более рациональным является производство молочно-белковых концентратов. При этом на основе белков сыворотки изготавливают заменители сухого обезжиренного молока, кормовые добавки и др.

Лактоза может быть источником энергии для многих видов микроорганизмов, сырьем для микробного производства белковой биомассы. Для ее получения чаще всего используют дрожжи. Установлено, что коэффициент конверсии белка сыворотки в микробный белок у дрожжей в 20 раз выше, чем степень преобразования его в животный белок. Кроме того, большинство видов дрожжей обогащает сыворотку витаминами. В качестве продуцентов применяют различные штаммы родов Saccharomyces, Kluyveromyces fragilis, Candida, Trichosporon, Torulopsis.

1.4. Принципиальная технологическая схема выращивания кормовой биомассы

Чистую культуру в log-стадии переносят в малый посевной аппарат (500 л) с питательной средой, рН которой доводится аммиачной водой или известковым молоком до 5,5 - 5,8. Сначала в аппарат подают около 40 л среды, разбавляют её в 4 - 4,5 раза стерильной водой и при интенсивной аэрации добавляют остальное количество питательной среды (80 - 100 л), рН среды - 4,5 - 5,5. Из качалочных колб вносят микробную суспензию объемом 1,5 - 2 л и производят культивирование до накопления в среде 3,5 - 4,0 г клеток/л по абсолютно сухому веществ (АСВ). Обычно для этого требуется 15 - 18 ч.

Суспензия из малого посевного аппарата подается в аппарат объемом 4 - 5 м 3 , предварительно заполненный питательной средой (≈ 200 л) и стерильной водой (1,2 - 1,5 м 3), включается аэрация и при постоянном доливе (70 - 75 л/ч) питательной среды и добавления аммиачной воды для поддержания заданного рН проводится культивирование 10 - 12 ч.

Выращивание засевной культуры проводится в ферментаторе объемом 15 - 20 м^3 . Аппарат на 10 % по объему заполняется стерильной или кипяченой водой, туда же вводится около 0,5 м^3 питательной среды и полностью перекачивается все содержимое предыдущего аппарата (2,5 - 2,7 м^3). Выращивание посевного материала без отбора суспензии продолжается 8 - 9 часов при интенсивной аэрации и постоянном доливе питательной среды (170 - 200 л/ч) до накопления в ферментере биомассы в количестве 4 - 5 г АСВ/л. После этого засевную культуру начинают отбирать на основное производство в количестве 1,3 - 1,7 м^3 /ч при одновременном доливе питательной среды.

Процесс ферментации длится от 5 до 10 суток, а затем цикл приготовления посевного материала возобновляется. К подготовительным стадиям производства относится приготовление растворов питательных солей и микроэлементов, необходимых для нормального развития микроорганизмов. Этот участок имеет свою технологическую схему. Минеральные компоненты группируют в два раствора, которые параллельно по-

даются в основной ферментатор: раствор всех микроэлементов (N, P, K), необходимое количество которых составляет 5 - 70 г/л; раствор микроэлементов (Mg, Mn, Fe, Zn и др.), концентрации которых не превышают 5 - 10 мг/л.

Технологические потоки из всех подготовительных отделений (компримирование воздуха, хранение и подготовка сырья, получение засевной культуры, приготовление растворов питательных солей и микроэлементов, технологическая вода, аммиачная вода, стерильная культуральная жидкость) поступают на главную стадию производства — стадию ферментации. Основным аппаратом в этом отделении является ферментатор — аппарат полного смешения по жидкой фазе, обеспечивающий рост и развитие популяций микроорганизмов в объеме жидкой фазы; транспорт питательных веществ к клеткам микроорганизмов; отвод от микробных клеток продуктов их обмена; отвод из среды тепла.

Затем следуют другие этапы технологической схемы получения кормовой биомассы:

- *Сгущение суспензии микроорганизмов*. При этом концентрация биомассы повышается до 12 16 % ACB. Для этого используют сепараторы, а также флокуляцию, коагуляцию, флотацию или декантацию.
- *Термообработка суспензии*. При нагревании микроорганизмов до температуры 75 85 °C в течение 10 40 мин происходит гибель штамма-продуцента и практически всей сопутствующей микрофлоры.
- *Концентрирование суспензии*. Проводят в отделении выпаривания до концентрации 23 25 % ACB. Для этого используется трехкорпусная вакуум-выпарная установка: I корпус 90 °C, II 75 и III 60 °C.
- Сушка. В этом отделении происходит образование готового продукта с влажностью ≈ 10 % (по массе). Для этого используются конвективные сушилки (распылительные, кипящего слоя, ленточные и барабанные).
- Грануляция и сушка. Обычно сухая биомасса, содержащая 8 10 % (по массе) влаги представляет собой готовый продукт и после упаковки направляется на склад к потребителю. Если продукт необходимо получить в виде гранул, то сухая и влажная (после выпарки) биомасса в соотношении 1:1 поступает в гранулятор. При этом влажная биомасса налипает на сухие частицы и вся масса влажностью 45 50 % движется в аппарате, формируя гранулы, которые затем подаются в сушилку кипящего слоя. Гранулы подсушиваются до остаточной влажности 8 10 % (по массе) горячим воздухом или топочными газами с температурой 260 300 °C;
- Фасовка и упаковка готового продукта. Сухая биомасса поступает в приемный бункер и фасуется в бумажные мешки с клапаном массой 25 30 кг. Эти мешки укладываются на специальные поддоны, которые отвозят их на склад или отгружают потребителю.

ПРАКТИЧЕСКАЯ ЧАСТЬ

ФИЗИКО-ХИМИЧЕСКАЯ ХАРАКТЕРИСТИКА КОРМОВЫХ ДРОЖЖЕЙ

ЦЕЛЬ: сформировать навык проведения физико-химического анализа кормовых дрожжей.

Оборудование

- 1. Бумажные пакеты.
- 2. Ступки.
- 3. Пестики.
- 4. Бюретка.
- 5. Технические весы.
- 6. Стаканы.
- 7. Фарфоровые тигли.
- 8. Термостат.
- 9. Муфельная печь.

Реактивы

- 1. 1% спиртовой раствор фенолфталеина.
- 2. 0,1 н раствор гидроксида натрия.
- 3. Концентрированная серная кислота.
- 4. 40% раствор нейтрализованного формалина.

ОПРЕДЕЛЕНИЕ КИСЛОТНОСТИ КОРМОВЫХ ДРОЖЖЕЙ

Ход анализа

Навеску дрожжей (10 г) помещают в фарфоровую ступку и растирают её пестиком, постепенно доливая воду (всего 50 мл). В полученную суспензию добавляют 3-5 капель фенолфталеина и титруют смесь 0,1 н раствором гидроксида натрия до появления слабого розового окрашивания, не исчезающего в течение 1 мин.

Кислотность дрожжей, в пересчете на уксусную кислоту (в мг на 100 г дрожжей), вычисляют по формуле:

$$X = V \times 6 \times K \times 10$$
,

где X – кислотность дрожжей в пересчете на уксусную кислоту; V – количество 0,1 н раствора щелочи, пошедшее на титрование, мл; 6 – количество уксусной кислоты, эквивалентное 1 мл 0,1 н раствора щелочи, мг; K – поправочный коэффициент 0,1 н раствора гидроксида натрия; 10 – переводной коэффициент.

Обязательно проводят два параллельных определения и вычисляют среднюю величину с точностью до десятой.

ОПРЕДЕЛЕНИЕ МАССОВОЙ ДОЛИ БЕЛКОВ В КОРМОВЫХ ДРОЖЖАХ МЕТОДОМ ФОРМОЛОВОГО ТИТРОВАНИЯ

Метод заключается в блокировке свободных аминогрупп белков внесенным нейтрализованным формалином (формолом). Свободные карбоксильные группы белков затем нейтрализуются щелочью. Количество щелочи, пошедшее на титрование карбоксильных групп, косвенно отражает массовую долю белков.

Ход анализа

10 г дрожжей разводят в 90 мл дистиллированной воды и титруют в присутствии фенолфталеина 0,1 н раствором гидроксида натрия до появления слабой розовой окрас-

ки. Затем вносят 5 мл 40% нейтрализованного формалина и вновь проводят титрование 0,1н раствором гидроксида натрия до не исчезающей слабой розовой окраски. Количество щелочи, пошедшее на второе титрование (при первом титровании оно расходуется на нейтрализацию веществ, обусловливающих кислотность дрожжей), умножают на коэффициент 0,959 и получают массовую долю белков в дрожжах.

СПИСОК ЛИТЕРАТУРЫ

1. Общая биотехнология: методические указания к лабораторным работам / сост.: В.А. Блинов, С.Н. Буршина. – Саратов: «РИК «Полиграфия Поволжья», 2004. – С. 58-60.

Вопросы для самоконтроля

- 1) Что такое биотехнология?
- 2) Сформулируйте цель и задачи биотехнологии в области кормопроизводства.
- 3) Каковы последствия недостатка или полного отсутствия белка в рационе животного?
- 4) Перечислите преимущества производства биомассы с помощью микробного синтеза.
- 5) Дрожжи и бактерии как нетрадиционные источники белка, их преимущества и недостатки.
 - 6) Какие водоросли можно использовать в качестве кормовых добавок?
 - 7) Грибы как перспективный источник кормового белка.
 - 8) Перечислите сырьевые источники для синтеза микробного белка.
 - 9) Парафины нефти как сырье для синтеза микробного белка.
 - 10) Спирты как субстрат для микробного синтеза белка.
 - 11) Использование растительной биомассы для культивирования продуцентов белка.
 - 12) Молочная сыворотка как сырье для производства белковой биомассы.
 - 13) Технология выращивания засевной культуры для получения кормовой биомассы.
- 14) Охарактеризуйте главную стадию (стадию ферментации) и последующие этапы технологической схемы производства кормовой биомассы.

СПИСОК ЛИТЕРАТУРЫ

Основная

1. *Клунова, С.М.* Биотехнология: учебник / С.М. Клунова, Т.А. Егорова, Е.А. Живухина. – М.: Академия, 2010. – 256 с. – ISBN 978-5-7695-6697-4

Дополнительная

- 1. Биотехнология: учебное пособие для вузов, в 8 кн., под ред. Егорова Н.С., Самуилова В.Д. М., 1987.
- 2. *Блинов, В.А.* Общая биотехнология: Курс лекций. В 2-х частях. Ч. 2. Саратов: ФГОУ ВПО «Саратовский СГАУ», 2004. 144 с. ISBN 5-7011-0436-2
- 3. *Елинов, Н.П.* Основы биотехнологии / Н.П. Елинов. СПб.: Наука, 1995. ISBN 5-02-026027-4
- 4. *Никульников*, *B*.С. Биотехнология в животноводстве: учебное пособие / В.С. Никульников, В.К. Кретинин. М.: Колос, 2007. 544 с. ISBN 978-5-10-003966-2
- 5. Сельскохозяйственная биотехнология / Шевелуха В.С. и др. М.: Высшая школа, 2003. 427 с. ISBN: 5-06-004264-2
- 6. Базы данных, информационно-справочные и поисковые системы, Агропоиск, полнотекстовая база данных иностранных журналов Doal, поисковые системы Rambler, Yandex,

Google:

- Биотехнологический портат Bio-X (ссылка доступа http://bio-x.ru)
- Интернет-журнал «Коммерческая биотехнология» (ссылка доступа http://cbio.ru)
- On-line-журнал «Биотехнология. Теория и практика» (ссылка доступа http://www.biotechlink.org)
 - 7. Нормативно-правовая литература:
- Комплексная программа развития биотехнологий в Российской Федерации на период до 2020 года / утверждено председателем правительства Российской Федерации В. Путиным 24 апреля 2012 г. № 1853 π -П8. М., 2012. 76 с. (ссылка доступа http://www.nacles.ru/ftpgetfile.php?id=247)
- Рабочие материалы к стратегии развития биотехнологической отрасли промышленности до 2020 года / Общество биотехнологов России им. Ю.А. Овчинникова. Союз предприятий биотехнологической отрасли. М., 2009. 85 с. (ссылка доступа http://www.biorosinfo.ru/papers-society/Strategy_Bioindustry.pdf)
- Тенденции развития промышленного применения биотехнологий в Российской Федерации / Институт биохимии им. Н.А. Баха РАН. М., 2011. 323 с. (ссылка доступа http://sedi2.esteri.it/Sitiweb/AmbMosca/Pubblicazioni/Faldoni/biotecnologierus.pdf)

Тема 2

БИОТЕХНОЛОГИЧЕСКИЕ ПРИЕМЫ В ПРОИЗВОДСТВЕ РАСТИТЕЛЬНЫХ КОРМОВ

ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

2.1. Принцип силосования кормов

 $\it Cunocoвaниe$ (от испанского $\it silos-sma$) — это биологический метод консервирования кормов, в основе которого лежит молочнокислое брожение.

Технология силосования: 1) скашивание (с провяливанием или без него) и измельчение растений; 2) транспортировка зеленой массы к месту силосования; 3) укладка в хранилища (траншеи, ямы), разравнивание и уплотнение силосуемой массы; 4) плотное укрытие и изоляция силосуемого сырья от воздуха после заполнения хранилища. Различают силос из кукурузы, силос из однолетних и многолетних растений, комбинированный силос.

Преимущества силосования: 1) сочную растительную массу можно силосовать в любую погоду, при этом потери составных частей корма, в том числе и витаминов, значительно ниже, чем, например, при заготовке сена; 2) правильно заквашенный корм хорошо поедается животными, в результате чего повышается их продуктивность; 3) силосовать можно такие корма (ботва свеклы, картофеля, отходы крахмалопаточного производства), которые часто не используются в хозяйствах; 4) засилосованный корм можно хранить длительное время, иногда десятилетиями; 5) правильно приготовленный силос имеет хорошие вкусовые качества, возбуждает аппетит и в сбалансированных рационах улучшает использование разных составных частей корма.

Способы силосования кормов: 1) Холодный способ — проходит при температуре (25 - 35 °C). При этом измельченная силосуемая масса плотно укладывается и хорошо изолируется от воздуха. Холодный способ силосования в нашей стране распространен повсеместно. 2) Горячий способ — проходит при температуре 50 °C. При этом корм укладывают рыхло и постепенно, что создает условия для более бурного развития микробиологических процессов. При такой технологии происходит потеря больших количеств питательных веществ.

Главное консервирующее средство – молочная кислота. Микроорганизмы способны превращать сахара в молочную, уксусную, пропионовую и другие кислоты, которые придают корму острый специфический запах. Кроме сахаров в растениях содержатся протеины, аминокислоты, минеральные соли, которые нейтрализуют, связывают образовавшиеся кислоты и выполняют роль буферных веществ.

Силосуемость растений определяется *сахарным минимумом* — это процент сахара в растениях, необходимый для накопления молочной кислоты в количестве, обеспечивающем смещение pH силоса до 4,2 при данной буферности исходного сырья.

При содержании в растениях большого количества сахаров и недостатке протеина силос получается перекисленным и животные его плохо поедают. Избыточное содержание влаги в силосуемой массе ведет к накоплению большого количества жидкости, и жизнь клеток скошенных растений продлевается, на что используются сахара, крахмал, протеин. Чтобы предотвратить ферментативные процессы, силосуемую массу быстро закладывают в кормохранилища и изолируют от воздуха.

При несоблюдении правил силосования наряду начинают развиваться микробиоло-

гические процессы. Это ведет к повышению температуры, протеины вступают во взаимодействие с сахарами; образуются пахучие вещества — изовалеоиановый альдегид (напоминает запах ржаного хлеба), фурфурол (запах яблок), оксиметилфурфурол (запах меда). Такой корм охотно поедается животными, так как ароматические вещества возбуждают у них аппетит. Однако он беден протеином, каротином и другими питательными веществами, необходимыми для нормальной жизнедеятельности организма животных.

2.2. Микрофлора силоса

Молочнокислые бактерии. Возбудителей молочнокислого брожения делят на две группы: 1) *гомоферментативные* — образуют из сахаров в основном молочную кислоту; 2) *гетероферментативные* — кроме молочной образуют уксусную кислоту, диоксид углерода, иногда этиловый спирт.

Бактерии группы кишечной палочки — участвуют в гетероферментативном молочнокислом брожении и образуют большое количество газов (*E. coli*). В кормовой массе они встречаются в начале силосования; с накоплением молочной кислоты их численность уменьшается. В результате их жизнедеятельности происходит превращение сахаров в малоценные продукты, что снижает питательность корма.

Аммонификаторы (гнилостные микробы) — всегда имеются на поверхности растений (сенная, картофельная, капустная и другие бациллы, а также эшерихии и протей). Они вызывают энергичное разложение белков в начале процесса силосования, когда рН более 4,5 - 4,7. При медленном подкислении корма аммонификаторы продолжают усиленно размножаться, накапливаются продукты распада протеина, которые могут вызывать отравление животных.

Дрожжи — всегда могут быть в растительной массе. Они сбраживают сахара до спирта, придают корму приятный запах и вкус, что возбуждает у животных аппетит, продуцируют витамины и другие биологически активные вещества, что способствует развитию микроорганизмов. Однако дрожжи для своей жизнедеятельности используют сахара, а, следовательно, уменьшают образование молочной кислоты. Некоторые из дрожжей даже разлагают органические кислоты, что тормозит процесс силосования. Обычно дрожжи усиленно размножаются в начале процесса, а затем их численность уменьшается.

Плесневые грибы (Penicillium, Aspergillu s и др.). В силосной массе сохраняются недолго. Они хорошо переносят кислую среду, но являются аэробами. При доступе воздуха плесневые грибы энергично размножаются и используют молочную и другие органические кислоты. Это ведет к повышению рН, созданию условий для развития споровых форм микробов — маслянокислых и аммонификаторов, в результате чего корм становится непригодным к скармливанию животным.

Маслянокислые бациллы (клостридии) — попадают на растения из почвы. Это — облигатные анаэробы, поэтому при хорошем уплотнении силосуемой массы создаются условия для их развития. Они сбраживают сахара с образованием масляной кислоты, диоксида углерода и водорода. Кроме того могут образовываться уксусная, пропионовая и муравьиная кислоты, а также спирты (этиловый, бутиловый и ацетон). Маслянокислые бациллы способны переводить молочную кислоту в масляную. Она придает горький вкус и неприятный запах корму, поэтому он плохо поедается животными. При попадании маслянокислых бацилл из корма в молоко и молочные продукты (сыры) ухудшается их качество, развиваются процессы, приводящие к порче продуктов. Мас-

лянокислые бациллы имеют мощный ферментативный аппарат, способны усваивать молекулярный азот из воздуха. При рН 4,7 и ниже маслянокислые бациллы развиваться не могут.

Уксуснокислые и целлюлозоразлагающие микробы — являются аэробами, и в хорошо засилосованном корме нет условий для их развития. Уксусная кислота может образовываться некоторыми молочнокислыми бактериями, поэтому она всегда присутствует в силосе. Целлюлозоразлагающие микробы не выдерживают кислой среды, не размножаются в силосе и практически не вызывают изменения клетки.

Силосование – динамический процесс, в котором выделяют три фазы:

Первая фаза — развитие смешанной микрофлоры. После скашивания растений изменяется их физиологическое состояние. Нарушается целостность клеток, в окружающую среду выделяется сок, а вместе с ним и легкорастворимые сахара. Пространство между растениями заполняется соком, но в некоторых местах остается воздух, создаются условия для развития разных физиологических групп. С уплотнением силосной массы условия меняются, прекращается доступ кислорода воздуха, интенсивнее развиваются молочнокислые бактерии, накапливаются кислоты, тормозится развитие других физиологических групп микроорганизмов. Эта фаза сравнительно быстро проходит при холодном способе силосования и длится дольше при горячем способе.

Вторая фаза — основное брожение. При этом преобладают молочнокислые бактерии. Они продолжают подкислять корм. Происходит гибель и задержка роста неспоробразующих микробов, сохраняются бациллы. Молочнокислые кокки постепенно заменяются молочнокислыми палочками. К этому времени питательные вещества корма в значительной степени расходуются, наступают неблагоприятные условия для развития микроорганизмов, поэтому их количество постепенно уменьшается.

Третья фаза — окончание микробиологических процессов в силосуемой массе. При этом накапливается большое количество молочной кислоты, постепенно отмирают кокковые и палочковидные формы микробов.

Химические процессы, которые происходят при силосовании зеленой массы растений, разделяют на 5 фаз: 1) Растительные клетки продолжают дышать; при этом они выделяют углекислый газ и расходуют углеводы; 2) Образование уксусной кислоты; 3) образование молочной кислоты. Первые три фазы продолжаются по 3 - 5 дней. 4) Накопление молочной кислоты; рН снижается до 4,2 - 3,8; длится 12 - 21 день; 5) начинает образовываться масляная кислота, если содержание молочной недостаточно высоко. При этом разрушаются молочная кислота, протеины, углеводы. Это вызывает порчу силоса.

При силосовании кормов определенную роль играют антимикробные выделения растений — фитонциды, которые убивают на живых листьях и стеблях микроорганизмы или не дают им воспользоваться питательными веществами. После отмирания растений эти защитные свойства утрачиваются. Поскольку скошенные растения отмирают не сразу, то они некоторое время сохраняют свою фитонцидность. Действие этих веществ на гнилостные и маслянокислые микроорганизмы более сильное, чем на молочнокислые бактерии. Поэтому в изолированной растительной массе размножение гнилостной и маслянокислой микрофлоры задерживается веществами, выделяемыми травами. Молочнокислые бактерии в это время будут развиваться и перерабатывать сахара в молочную кислоту, которая подкисляет силосную массу. Достаточно кислая среда подавляет жизнедеятельность гнилостной и маслянокислой микрофлоры.

2.3. Химическое силосование сочных кормов

Химическое силосование позволяет сократить потери питательных веществ почти в 2 раза и повысить переваримость кормовых культур. Консервирующий эффект химического препарата обусловливается ингибированием ферментов в скошенных растениях. Химическими консервантами можно регулировать жизнедеятельность микроорганизмов. Так, при силосовании кукурузы, сорго, подсолнечника важно не только подавить гнилостные и маслянокислые бактерии, но и ограничить развитие молочнокислых и дрожжевых клеток, так как они вызывают большие потери сахаров. Особенность химического консервирования — значительное уменьшение степени гидролиза белков, углеводов. При этом удается снизить потери питательных веществ в 2 - 3 раза, а в отдельных случаях — в 4 - 6 раз; на 15 - 20 % увеличить выход силоса.

В настоящее время для консервирования зеленых кормов и влажного зерна испытано около 2 тыс. химических соединений. При выборе консерванта учитывают отсутствие у него ядовитых и канцерогенных свойств; стоимость; удобство и безопасность при внесении в силосную массу.

Выпускаются следующие *консерванты*: 1) концентрированная смесь низкомолекулярных жирных кислот — содержит не более 35 % воды, 30 % уксусной кислоты, 27 - 29 % муравьиной, не менее 5 % пропионовой и не более 5 % масляной кислот; 2) уксусная кислота; 3) бензойная кислота — консервирующее действие проявляется при рН корма 4,5. Она подавляет развитие дрожжей, кишечной палочки и в меньшей степени — маслянокислых и уксуснокислых бактерий; 4) пиросульфат натрия; 5) бисульфат натрия — действует на гнилостные бактерии и очень слабо — на молочнокислые; при этом в силосе улучшается соотношение органических кислот.

2.4. Ферментные препараты и бактериальные закваски для силосования кормов

Современным биотехнологическим приемом стабилизации и биоконверсии кормов является применение ферментных препаратов микробного или грибного происхождения.

В настоящее время используется множество ферментов, например, пектафоэтидин $\Pi 10$ х, амилосубтилин $\Gamma 3$ х. Очищенные ферментные препараты вносятся в дозе 0,02 - 0,05 % от массы сырья, а неочищенные -0,5 - 1 %. «X» означает ферментные препараты без предварительной очистки. « $\mu \mu \nu$ » характеризуют степень активности по отношению к нативной культуре. « μ » — поверхностное выращивание культуры, а « μ » — глубинное.

Процессом силосования можно управлять путем искусственного обогащения зеленой массы специальными культурами молочнокислых бактерий (Lactobacillus plantarum, L. acidophilus, L. faecalis, Streptococcus lactis, L. brevis). Они активно размножаются в ней и ведут процесс созревания силоса в нужном направлении. С этой целью выращивают биомассу, которую затем переводят в анабиотическое состояние.

Кроме монокультур при изготовлении заквасок для силосования применяют смеси культур. В состав заквасок следует вводить бактерии с амилолитической и целлюлазной активностью. Часто ферменты и закваски применяют совместно.

2.5. Теоретические основы сенажирования трав

Сенажирование – разновидность консервирования корма, который получается из

провяленных до влажности 40 - 55 % многолетних и однолетних трав. Сохранность кормов обеспечивается не за счет значительной кислотности, а за счет физиологической сухости исходного сырья, сохраняемого а анаэробных условиях. pH сенажа — 4,4 - 5,6. По аминокислотному составу сенаж приближается к зеленым растениям.

При сенажировании могут образовываться оксиды азота, диоксид серы и сероводород. Они подавляют жизнедеятельность гнилостных и других бактерий и тем самым способствуют повышению качества силоса, сохранности питательных веществ.

Технология приготовления сенажа: 1) скашивание и провяливание растений;

- 2) подбор травы из валков, измельчение ее и погрузка в транспортные средства;
- 3) транспортировка и закладка в хранилище (траншеи); 4) укрытие хранилищ.

Для приготовления сенажа используют бобовые культуры – люцерну, клевер, донник, эспарцет, козлятник восточный; злаковые – кострец, тимофеевку; смеси бобовых и злаковых культур. Различают сенаж из однолетних трав; из смеси бобовых и злаковых трав; из многолетних трав.

Микробиологические и биохимические процессы при сенажировании

Исходная влажность растительной массы, закладываемой на консервирование, влияет на соотношение в ней разных групп бактерий и на интенсивность микробиологических процессов. Например, в подвяленном клевере численность микроорганизмов в 80 -100 раз выше, чем в исходном сырье с влажностью 74 %. Молочнокислые бактерии составляют 80 - 90 % от общего количества микроорганизмов.

Молочнокислые бактерии имеют повышенное осмотическое давление в клетках. Это позволяет им активно проявлять свою жизнедеятельность тогда, когда развитие гнилостных микроорганизмов подавлено. Они имеют увеличенный объем клеток и сбраживают маннозу, рамнозу, сорбит, декстрин и крахмал, а основными продуктами брожения являются молочная и уксусная кислоты. Микробиологические процессы интенсивно протекают в первые 7 - 15 дней.

В провяленном сырье жизнедеятельность кишечной палочки и гнилостной микрофлоры ограничена при 65%-й влажности, а размножение молочнокислых бактерий сводится к минимуму при снижении влажности до 40 %.

Скорость течения микробиологических процессов связана с образованием органических кислот. Их наибольшее количество наблюдается, когда численность микроорганизмов достигает максимума, причем в сенаже молочной кислоты в 2,4 раза меньше, чем в силосе, а свободной уксусной — в 2 раза.

В клетках провяленных растений в связи с активизацией амилазы, происходит гидролиз крахмала и накапливаются легкосбраживаемые углеводы. Концентрация их в клеточном соке увеличивается в 2 раза, что создает благоприятные условия для развития молочнокислых бактерий при консервировании высокобелковых трудносилосующихся культур.

В процессе сенажирования под действием протеаз растительных клеток происходит ферментативный гидролиз белка. Распад белка идет до аминокислот через промежуточные соединения и аммиака.

Через некоторое время после закладки растительной массы в газонепроницаемое сооружение наступает анаэробиоз, и распад белка ограничивается стадией образования аминокислот. По мере накопления аминокислот активность протеаз снижается, а затем прекращается.

Повышенное осмотическое давление угнетает рост сначала маслянокислых микро-

бов, затем молочнокислых и наконец гнилостных. При этом понижается рН, который в совокупности с осмотическим давлением препятствует затем развитию маслянокислых бацилл. Поэтому в сенаже масляная кислота обычно отсутствует, и появляется только в результате гнилостного распада протеина.

В сенажной массе образуется молочной кислоты — около 80 %, а уксусной — около 20 % от общего количества образующихся органических кислот. Они служат консервантами.

В образовании уксусной кислоты участвуют дрожжи, уксуснокислые, молочнокислые, маслянокислые бактерии и другие микроорганизмы. В первые сутки брожения в корме преобладает уксусная кислота, в дальнейшем образование ее затухает.

При сильном уплотнении массы температура в ней колеблется в пределах 27 - 37 °C. При слабом уплотнении температура повышается до 40 - 45 °C и более, развивается маслянокислое брожение.

2.6. Протеинизация крахмалсодержащего сырья

Для увеличения количества протеина в растительных кормах используют два приема: 1) Выращивание микроорганизмов на крахмалсодержащем сырье. Это повышает количество протеина и обогащает продукт витаминами. Например, в дрожжах присутствуют все витамины группы В и различные другие вещества, стимулирующие рост и метаболизм; 2) Введение гидролитических ферментов. Добавление таких ферментов в корма увеличивает прирост живой массы животных и птиц в среднем на 10 - 15 % и снижает затраты корма на 1 кг прироста на 5 - 7 %.

Технологический процесс получения белково-ферментного препарата

- **1.** Приготовление посевного материала. Дрожжеподобную культуру Enolomycopsis fibulgera R-574 выращивают на питательной среде, которая содержит (в %): мелассу 5,0 или различную фуражную мука 10; $(NH_4)_2HPO_4$ 0,3; $CaCl_2$ 0,04. Исходное значение pH среды 6,8 7,2; температура выращивания 30 32 °C. В ферментаторе инокулят размножается на мелассной среде. В культуральную жидкость его вводят из расчета 1 %. Выращивание посевного материала длится 13 16 ч.
- **2.** Главная ферментация. Дрожжевую культуру в главном ферментаторе выращивают при температуре 30 32 °C с постоянным перемешиванием и подачей воздуха 12 ч. Следует помнить, что живые клетки в организме животных перевариваются с трудом, поэтому часть дрожжевого белка не усваивается. В связи с этим культуральную жидкость подогревают до 90 °C в течение получаса. Готовая продукция не может долго храниться, и поэтому её после завершения ферментации направляют на ферму для скармливания животным в смеси с другими кормами.

2.7. Модификация сока зеленых растений

Из зеленой массы люцерны, клевера и травосмеси можно за сезон получить свыше 1 тонны протеина с гектара. Стоимость протеина зеленой массы в 2,5 - 5 раз меньше, чем протеина зерна.

В настоящее время предложены следующие методы получения протеиновых концентратов: отжатие сока; коагуляция протеина с последующим центрифугированием и сушкой. Эти методы достаточно сложные, дорогие, требуют значительных энергозатрат.

Большую привлекательность имеет технология анаэробной ферментации растительного сока и коагуляция белка химико-биологическим путем, а также силосование жома. В этом процессе спонтанного брожения контролируется общая кислотность и соотношение кислот. При достижении определенного рН происходит коагуляция протеина, иногда для усиления ее добавляют флокулянты или химические консерванты.

При анаэробной ферментации кормовые свойства растительного протеина улучшаются, так как инактивируется ингибитор трипсина, алкалоидов, трансформируется фенол, ненасыщенные жирные кислоты. К растительному протеину присоединяется бактериальная биомасса с высоким содержанием метионина. По химическому составу ферментативный сок приближается к обрату. Причем, срок хранения такого продукта значительно увеличивается. Качество же силосованного жома улучшается путем внесения закваски молочнокислых бактерий.

Технология ферментации растительного сока

Периодическая технология. Ферментатор-коагулятор постепенно заполняют свежеотжатым соком. Когда рН снижается до 4,2 - 4,5, сок уже можно скармливать животным, не отделяя коагулят или выделяя часть протеина с коагулятом.

Непрерывная или полунепрерывная технология. В центральную часть ферментаторакоагулятора непрерывно или порциями подают свежий сок, который вытесняет из аппарата ферментированный сок. Периодически из нижней части выпускают коагулят. При такой технологии и вследствие полного заполнения ферментатора-коагулятора жидкостью, в нем создаются анаэробные условия и не развивается плесень. Аппарат может работать неделями без остановки и чистки. Перед началом ферментации в чистый аппарат необходимо ввести около 10 % активно бродящего сока или суспензию закваски кислотообразующих бактерий.

Этот процесс технически не сложен, малоэнергоемок. Полученный сок практически свободен от целлюлозы и содержит 1 - 3 % протеина.

ПРАКТИЧЕСКАЯ ЧАСТЬ

ИССЛЕДОВАНИЕ НЕКОТОРЫХ ФИЗИКО-ХИМИЧЕСКИХ ХАРАКТЕРИСТИК РАСТИТЕЛЬНЫХ КОРМОВ

ЦЕЛЬ: сформировать навык определения некоторых физико-химических характеристик растительных кормов (на примере силоса и сенажа).

По органолептическим и химическим показателям силос подразделяют на три класса (I, II, III) и неклассный (таблица 2.1).

Таблица 2.1 **Требования, предъявляемые к качеству силоса**

	Характеристика и нормы для классов				
Показатель					
	I	II	III		
силос с применением консервантов					
			допускается слабый		
Запах	приятный, фруктовый,		запах меда, ржаного		
	квашенных овощей		хлеба, уксусной кис-		
			лоты		

Массовая доля сухого вещества (%), не менее в силосе:			
• из подсолнечника, топинамбура	18	15	12
• из кукурузы	18	15	12
• из трав и их смеси	20	18	15
Содержание каротина в сухом веществе			
(мг/кг), не менее в силосе:			
• из многолетних трав	60	40	30
• из кукурузы и прочих растений	70	60	40
Концентрация водородных ионов (рН)	3,8-4,3	3,8-4,3	3,7 – 4,5
Массовая доля молочной кислоты в общем количестве кислот (%), не менее	55	50	40
Массовая доля масляной кислоты (%), не более	0,1	0,1	0,2

К неклассному относят силос бурого и темно-коричневого цвета с сильным запахом меда или свежеиспеченного ржаного хлеба, соответствующий по остальным показателям требованиям ГОСТа.

ОПРЕДЕЛЕНИЕ КИСЛОТНОСТИ СИЛОСА

Оборудование

- 1. Весы технические и аналитические.
- 2. Химический стакан на 50 мл.
- 3. рН-метр.
- 4. Фарфоровая чашка.
- 5. Коническая колба на 200 мл.
- 6. Обратный холодильник (прямой, длиной 40 см).
- 7. Цилиндр мерный на 100 мл.
- 8. Пробирки мерные.
- 9. Пипетки на 5 мл.
- 10. Пипетки глазные.
- 11. Нож.
- 12. Горелка газовая.
- 13. Астбестовая сетка.

Реактивы

- 1. Силосный индикатор (реактив №1: метилрот -0.1 г, спирт-ректификат -300 мл, дистиллированная вода -200 мл; реактив №2: бромкрезолпурпур -0.1 г; гидроксид натрия 0.03 н раствор -3.7 мл; дистиллированная вода -500 мл).
- 2. Вода дистиллированная.
- 3. NaOH, 0,1 н раствор.
- 4. Красная лакмусовая бумага.

Ход анализа

Определение концентрации водородных ионов (рН) проводят двумя методами: с

помощью рН-метра и силосного индикатора.

1) Навеску свежего силоса массой 5 г помещают в химический стакан на 50 мл, приливают дистиллированную воду, чтобы силос полностью пропитался, и настаивают в течение 1 часа. Определяют значение рН с помощью рН-метра.

За окончательный результат принимают среднее арифметическое значение двух параллельных определений.

2) Для определения рН силоса выпускают готовый специальный силосный индикатор. Однако его можно приготовить в условиях лаборатории из следующих ингредиентов:

<u>Реактив № 1:</u> метилрот -0,1 г; спирт-ректификат -300 мл; дистиллированная вода -200 мл.

Реактив №2: бромкрезолпурпур -0.1 г; гидроксид натрия (0.03 н раствор) -3.7 мл; дистиллированная вода -500 мл.

Реактивы хранят отдельно и перед употреблением их смешивают в соотношении 3 части реактива № 1 и 1 часть реактива № 2.

Для установления pH 10-15 г силосной массы помещают в химический стаканчик и заливают 50-60 мл дистиллированной водой, настаивают 10-15 минут. 1-2 мл настоя переносят в фарфоровую чашку и добавляют 2-3 капли силосного индикатора. Через 2-3 минуты по окраске жидкости определяют значение pH:

• красная	4,2 и ниже
• красно-оранжевая	4,2-4,6
• оранжевая	4,6-5,1
• желтая	5,1-6,1
• желто-зеленая	6,1-6,4
• зеленая	6,4-7,2
• зелено-синяя	7,2-7,4

Определение кислотности

В силосе хорошего качества молочной кислоты должно быть в 2-3 раза больше (1,5-1,8%), чем уксусной (0,2-0,5%). Если процесс силосования идет неправильно, то соотношение этих кислот нарушается.

Для определения общей кислотности силоса готовят вытяжку, которую титруют 0,1 н раствором гидроксида натрия. Среднюю пробу силоса мелко нарезают и навеску (20 г) помещают в коническую колбу, заливают дистиллированной водой (200 мл) и тщательно перемешивают. Колбу соединяют с обратным холодильником, нагревают в течение 1 часа и полученный дистиллят охлаждают. После охлаждения содержимое колбы титруют 0,1 н раствором гидроксида натрия. В период титрования периодически наносят одну каплю содержимого на красную лакмусовую бумагу и окончание титрования устанавливают по появлению голубого ободка от одной капли раствора.

Содержание кислот в силосе в переводе на молочную кислоту выражают в процентах: 1 мл 0,1 н раствора гидроксида натрия соответствует 0,009 г молочной кислоты. Кислотность определяют по молочной кислоте, потому что она обладает более высокой диссоциирующей способностью по сравнению с уксусной (в 9 раз) и масляной (в 90 раз) кислотами.

Общую кислотность силоса (%) определяют по формуле:

$$X = \frac{0,009a}{m} \times 100,$$

где X – кислотность силоса, %; 0.009 – коэффициент пересчета всех кислот на молочную кислоту; a – количество 0.1 н раствора гидроксида натрия, пошедшего на титрование, мл; 100 – коэффициент перевода в проценты; m – масса навески корма, Γ .

ОПРЕДЕЛЕНИЕ АММИАКА В СИЛОСЕ

Содержание аммиака в силосе служит показателем гнилостного разложения белка. Определяют с помощью реактивов Эбера и Несслера.

Оборудование

- 1. Весы технические.
- 2. Штатив с пробирками.
- 3. Стеклянная палочка.
- 4. Бумажный фильтр.
- 5. Колба на 250 мл.
- 6. Пробка с проволокой для пробирки.
- 7. Нож.
- 8. Пипетка на 5 мл.

Реактивы

- 1. Реактив Эбера (1 часть крепкой соляной кислоты, 3 части 96%-ного спирта, 1 часть эфира).
- 2. Вода дистиллированная.

Ход анализа

- В широкую пробирку наливают 1-2 мл реактива Эбера. Пробирку закрывают пробкой с пропущенной через нее проволокой, загнутой на нижнем конце в виде крючка, с насаженным на него кусочком силоса. Реакцию наблюдают в проходящем свете. При наличии в силосе свободного аммиака около кусочка образуется хорошо видимое облачко или беловатый туман из хлористого аммония.
- Навеску мелконарезанного силоса (25 г) помещают в колбу или мензурку на 250 мл и на 3/4 заливают дистиллированной водой. Содержимое колбы настаивают в течение 4-5 ч при температуре 20-25°С, периодически встряхивая или размешивая стеклянной палочкой. Полученный настой фильтруют через бумажный фильтр. Появление ярко-желтого или оранжевого окрашивания указывает на присутствие аммиачных соединений, а выпадение кирпично-красного осадка на значительное их содержание.

КОЛИЧЕСТВЕННОЕ ОПРЕДЕЛЕНИЕ МОЛОЧНОЙ КИСЛОТЫ В СИЛОСЕ И СЕНАЖЕ

Исследуемый материал или раствор обрабатывают, прежде всего, соответствующими реактивами для удаления белков и углеводов, после чего имеющаяся молочная кис-

лота окисляется в кислой среде и в присутствии определенных катализаторов перманганатом калия в ацетальдегид, который отгоняется в отмеренное количество бисульфита и учитывается йодометрическим путем.

Оборудование

- 1. Лабораторная фильтровальная бумага марки ФНБ.
- 2. Холодильник Либиха.
- 3. Круглые плоскодонные колбы вместимостью 500 мл со шлифами.
- 4. Круглые плоскодонные колбы без шлифов на 1000 мл.
- 5. Бюретки на 10-20 мл; стеклянные воронки диаметром 12-15 см.
- 6. Мерные цилиндры на 250 мл.
- 7. Мерные колбы на 50, 100, 250, 1000 мл.
- 8. Конические колбы на 100, 200 мл.
- 9. Пипетки на 5 мл.
- 10. Технические весы.
- 11. Колбонагреватели на 300 и 200Вт.
- 12. Штативы.

Реактивы

- 1. CaO и CuSO₄, 10%-ные растворы.
- 2. H_2SO_4 , 50%-ный раствор (398 мл серной кислоты (плотность 1,84 г/см3) добавляют к 500 мл дистиллированной воды, после охлаждения доводят объем раствора до 1 л водой).
- 3. NaOH, 0,05 н раствор.
- 4. Фенолфталеин.
- 5. $K_2Cr_2O_7$, pactbop.
- 6. Пемза прокаленная.
- 7. Вода дистиллированная.

Ход анализа

- 1. Среднюю пробу силоса хорошо измельчают, перемешивают и, отвесив из нее 100 г, помещают в мерную колбу на 1000 мл, после чего заливают до метки дистиллированной водой. Колбу закрывают пробкой и встряхивают, а затем ставят для настаивания в прохладное место на 12 часов. По истечении этого времени содержимое колбы перемешивают и вытяжку фильтруют через вату в широкогорлой воронке.
- 2. Обессахаривание фильтрата: 200 мл полученного фильтрата переносят в мерную колбу вместимостью 250 мл, с помощью цилиндра добавляют туда 20 мл взвеси окиси кальция и 10 мл раствора сернокислой меди, содержимое встряхивают и оставляют на 1 час. Затем доводят дистиллированной водой объем жидкости в колбе до метки, перемешивают и фильтруют через сухой складчатый фильтр в сухую колбу. Полученный фильтрат используют для исследования.
- **3.** 200 мл обессахаренного фильтрата помещают в круглую плоскодонную отгонную колбу вместимостью 500 мл и для перевода связанных кислот в свободные добавляют в колбу 5 мл 50%-ного раствора серной кислоты, а для равномерного кипения вносят 4-5 кусочков пемзы. Содержимое колбы взбалтывают, колбу быстро соединяют с холодильником Либиха и нагревают.

- **4.** Сначала в течение 20-30 минут отгоняют первый дистиллят объемом 100 мл, затем, не прерывая отгона, в течение 10-15 минут отгоняют в другую колбу еще 50 мл. В качестве приемника удобно пользоваться мерными колбами вместимостью 100 и 50 мл с притертыми пробками. После отгона дистиллятов колбочки немедленно плотно закрывают.
- **5.** После отгона первого и второго дистиллятов к остатку жидкости в отгонной колбе добавляют для окисления молочной кислоты в уксусную 55 мл раствора двухромовокислого калия, а также 100 мл дистиллированной воды.
- **6.** Жидкость в колбе нагревают до кипения и затем в течение 10-15 минут отгоняют в мерную колбу 50 мл.
- 7. Все дистилляты поочередно переносят в конические колбы. Мерные колбы ополаскивают 10-15 мл воды и воду сливают в колбы с дистиллятами. Дистилляты титруют 0,05 н раствором едкого натра в присутствии нескольких капель фенолфталеина до слабо-розового окрашивания, не исчезающего в течение 1 мин. Количество израсходованной на титрование щелочи умножают на 1,25. Количество миллилитров 0,05 н щелочи, израсходованное на титрование первого, второго и третьего дистиллятов, обозначают соответственно индексами \mathcal{I}_1 , \mathcal{I}_2 , \mathcal{I}_3 . Содержание кислот в силосе (в процентах) определяют по следующим формулам:
 - Уксусной 0,096Д₂ 0,021Д₁
 - Масляной 0,043Д₁ 0,068Д₂
 - *Молочной* 0,123Д₃ 0,046Д₂+0,006Д₁

При определении кислот в силосе допускаемые расхождения между результатами параллельных определений не должны превышать $\pm 0.03\%$.

СПИСОК ЛИТЕРАТУРЫ

1. Биотехнология кормопроизводства / сост.: В.А. Блинов, М.Ю. Руднев, И.А. Сазонова, Е.А. Суржина. – Саратов: ООО «Ладога-ПРИНТ», 2006. – С. 45-49, 52-54, 56-57.

СТАБИЛИЗАЦИЯ ЖИДКИХ ПРОТЕИНОВЫХ ПРОДУКТОВ ХИМИЧЕСКИМИ КОНСЕРВАНТАМИ

ЦЕЛЬ: сформировать навык исследования химического состава жидких протеиновых продуктов растительного происхождения.

Жидкие протеиновые продукты (сок зеленой массы кормовых растений, сыворотка, коагулят) отличаются высокой влажностью и высоким содержанием белков. Такой субстрат служит хорошей средой для развития микроорганизмов, особенно бактерий с протеолитической активностью, в результате жизнедеятельности которых может разлагаться протеин и снижаться качество продуктов. С целью длительного сохранения жидких протеиновых продуктов и стабилизации микробиологических процессов и химического состава используют химические консерванты.

Одним из таких консервантов является формалин. Известно, что формалин, добавленный к соку, например, ботвы сахарной свеклы, сразу же после внесения сильно, ингибирует развитие микроорганизмов и прекращает развитие кислотообразующих бактерий в соке. Консервант препятствует снижению значений рН, останавливает процесс брожения и конверсию углеводов в кислоты, тормозит распад белка. В тоже время в соке без формалина в анаэробных условиях в результате бурного развития кислотооб-

разующих бактерий происходит спонтанное закисание, быстрое снижение рН, углеводы превращаются в органические кислоты, протеолизу подвергается значительная часть белка.

Материал исследования: свежеотжатый сок ботвы сахарной свеклы.

Оборудование

- 1. Термостат.
- 2. рН-метр или индикаторная бумага.
- 3. Водяная баня.
- 4. Фотоэлектроколориметр.
- 5. Центрифуга.
- 6. Пробирки.
- 7. Пипетки.
- 8. Воронки.
- 9. Фильтры.
- 10. Колбы с притертыми крышками.

Реактивы

- 1. 10 % раствор формалина.
- 2. Биуретовый реактив.
- 3. Стандартный раствор белка (1 г%).
- 4. о-толуидиновый реактив.
- 3 % раствор ТХУ.
- 6. Стандартный раствор глюкозы (100 мг%).

Ход анализа

В 3 колбы наливают по 50 мл свежего сока, полученного механическим отжатием ботвы сахарной свеклы. Первая колба — контрольная. Во вторую и третью добавляют соответственно 0,1 и 1,0 мл 10 % раствора формалина. Все три колбы плотно закрывают стеклянными крышками и помещают в термостат при температуре 37 °С. О степени стабилизации сока судят по величине рН, уровню углеводов и содержанию общего белка, которые определяют в соке до начала эксперимента, через 1 ч и через неделю после постановки опыта.

По результатам исследований строят графики зависимости величины определяемых показателей от продолжительности и условий хранения сока.

ОПРЕДЕЛЕНИЕ рН СОКА

рН сока определяют с помощью индикаторной бумаги или рН-метра.

ОПРЕДЕЛЕНИЕ КОНЦЕНТРАЦИИ УГЛЕВОДОВ

Концентрацию углеводов в соке определяют о-толуидиновым методом. Для этого в три пробирки (одна из них центрифужная) отмеривают по 1,8 мл раствора ТХУ. В

первую пробирку (центрифужную) приливают 0.2 мл сока (опытная проба), во вторую -0.2 мл стандартного раствора глюкозы (стандартная проба) и в третью -0.2 мл воды (контрольная проба). Содержимое пробирок перемешивают и опытную пробу центрифугируют в течение 10 минут при 2500-3000 об./мин. Центрифугат сливают в сухую пробирку.

Из каждой пробы отбирают по 0,5 мл раствора, переносят в другие пробирки, помеченные соответственно стеклографом, и добавляют во все пробирки по 4,5 мл о-толуидинового реактива. Пробирки закрывают кусочками фольги вместо пробок. Растворы перемешивают и помещают в кипящую водяную баню на 8 мин. После этого пробирки охлаждают под водопроводной водой и измеряют оптическую плотность опытной и стандартной проб на ФЭКе с красным светофильтром (длина волны – 670 нм) в кювете с толщиной слоя 1 см против контрольной пробы.

Расчет проводят по формуле:

C оп. = C ст. (E оп. / E ст.),

где С оп. – концентрация глюкозы в соке (мг%);

С ст. – концентрация стандартного раствора глюкозы, мг%;

Е оп. – оптическая плотность опытной пробы;

Е ст. – оптическая плотность стандартной пробы.

ОПРЕДЕЛЕНИЕ СОДЕРЖАНИЯ ОБЩЕГО БЕЛКА

Содержание общего белка определяют биуретовым методом. Для этого берут три пробирки. В первую наливают 1 мл сока (опытная проба), во вторую — 1 мл стандартного раствора белка (стандартная проба) и в третью — 1 мл воды. Во все пробирки добавляют по 4 мл биуретового реактива, перемешивают. Смесь оставляют стоять в течение 30 минут при комнатной температуре. Измеряют оптическую плотность на ФЭКе при зеленом светофильтре (540 нм) в кювете с толщиной слоя 1 см против контрольной пробы.

Расчет проводят по формуле, аналогичной для расчета концентрации глюкозы.

СПИСОК ЛИТЕРАТУРЫ

1. Общая биотехнология: методические указания к лабораторным работам / сост.: В.А. Блинов, С.Н. Буршина. – Саратов: «РИК «Полиграфия Поволжья», 2004. – С. 58-60.

Вопросы для самоконтроля

- 1) Что такое силосование?
- 2) Из каких этапов состоит технология силосования кормов?
- 3) Перечислите преимущества силосования.
- 4) Способы силосования кормов.
- 5) Что понимают под термином «сахарный минимум»?
- 6) Какие факторы влияют на качество силоса?
- 7) Перечислите основные группы микроорганизмов, составляющих микрофлору силоса. Каковы их функции?
- 8) Охарактеризуйте фазы силосования в зависимости от развития микрофлоры в силосуемой массе.
 - 9) Какие химические процессы протекают в процессе силосования зеленой массы?
 - 10) Роль фитонцидов при силосовании.
 - 11) Принцип химического консервирования сочных кормов.

- 12) Перечислите химические средства для консервирования зеленых кормов и влажного зерна.
 - 13) Какие современные приемы стабилизации и биоконверсии кормов известны?
 - 14) Назовите главные факторы, обусловливающие сохранность кормов при силосовании.
 - 15) рН силоса.
 - 16) Что такое сенажирование?
 - 17) Из каких этапов состоит технология приготовления сенажа?
 - 18) Какие микробиологические и биохимические процессы происходят при сенажировании?
 - 19) Назовите главные факторы, обусловливающие сохранность кормов при сенажировании.
 - 20) рН сенажа.
 - 21) Какие приемы используют для увеличения количества протеина в растительных кормах?
 - 22) Опишите технологию получения белково-ферментного препарата с использованием крахмалсодержащего сырья.
 - 23) Обоснуйте целесообразность ферментации растительного сока и силосования жома.
 - 24) Опишите технологию ферментации растительного сока.

СПИСОК ЛИТЕРАТУРЫ

Основная

- 1. *Фаритов*, *Т.А*. Корма и кормовые добавки для животных: учебное пособие / Т.А. Фаритов. СПб.: Лань, 2010. 304 с. ISBN 978-5-8114-1026-2
- 2. *Фасинин, В.И.* Кормление сельскохозяйственной птицы: учебник / В.И. Фасинин, И.А. Егоров, И.Ф. Драганов. М.: ГЭОТАР Медиа, 2011. 344 с. ISBN 978-5-9704-1996-0

Дополнительная

- 1. Биологические препараты. Сельское хозяйство. Экология: Практика применения / OOO «ЭМ-Кооперация» / сост.: Костенко Т.А., Костенко В.К.; под. ред. П.А. Кожевина. Саранск: ГУП РМ «Республиканская типография «Красный Октябрь», 2008. 296 с. ISBN 978-5-7493-1236-2
- 2. Биотехнология: реальность и перспективы в сельском хозяйстве: Материалы Международной научно-практической конференции (К 100-летию СГАУ имени Н.И. Вавилова). Саратов: Издательство «КУБиК», 2013. 286 с. ISBN 978-5-91818-278-1
- 3. Биотехнология: учебное пособие для вузов, в 8 кн., под ред. Егорова Н.С., Самуилова В.Д. М., 1987.
- 4. *Блинов, В.А.* Общая биотехнология: Курс лекций. В 2-х частях. Ч. 2. Саратов: ФГОУ ВПО «Саратовский СГАУ», 2004. 144 с. ISBN 5-7011-0436-2
- 5. *Блинов*, *В.А*. ЭМ-технология сельскому хозяйству / В.А. Блинов. Саратов, 2003.-205 с.
- 6. *Елинов*, *Н.П.* Основы биотехнологии / Н.П. Елинов. СПб.: Наука, 1995. ISBN 5-02-026027-4
- 7. *Никитина Е.В.* Микробиология: учебник/ Е.В. Никитина, С.Н. Киямова, О.А. Решетник. СПб.: ГИОРД, 2009. 368 с. ISBN 978-5-98879-075-4
- 8. *Никульников*, *B*.С. Биотехнология в животноводстве: учебное пособие / В.С. Никульников, В.К. Кретинин. М.: Колос, 2007. 544 с. ISBN 978-5-10-003966-2
- 9. Сельскохозяйственная биотехнология / Шевелуха В.С. и др. М.: Высшая школа, 2003.-427 с. ISBN: 5-06-004264-2
- 10. Журналы: Аграрный научный журнал, Ветеринария, Ветеринария и кормление, Ветеринария сельскохозяйственных животных, Главный зоотехник, Животноводство России,

Журнал микробиологии, эпидемиологии, иммунологии, Зоотехния, Коневодство и конный спорт, Кормление сельскохозяйственных животных и кормопроизводство, Кормопроизводство, Кролиководство и звероводство, Овцы, козы, шерстяное дело, Птицеводство, Свиноводство, Фармацевтическая промышленность, Биотехнология.

- 11. Базы данных, информационно-справочные и поисковые системы, Агропоиск, полнотекстовая база данных иностранных журналов Doal, поисковые системы Rambler, Yandex, Google:
- Адаптивное кормопроизводство: Международный научно-практический электронный журнал ВНИИ кормов им. В.Р.Вильямса; ссылка доступа http://adaptagro.ru/index.php?option=com_content&view=article&id=57&Itemid=73&lang=ru
- Научная электронная библиотека eLIBRARY.RU: журналы раздела тематического рубрикатора «Биотехнология» (ссылка доступа http://elibrary.ru/rubric_titles.asp?rcode=620000)
- On-line-журнал «Биотехнология. Теория и практика» (ссылка доступа http://www.biotechlink.org)
- Электронно-библиотечная система СГАУ: каталог диссертаций и автореферетов; область поиска биотехнология); ссылка доступа http://library.sgau.ru/cgibin/irbis64r_01/cgiirbis_64.exe)

Тема 3

КОРМОВЫЕ ДОБАВКИ БИОТЕХНОЛОГИЧЕСКОГО ГЕНЕЗА

ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

3.1. Кормовые препараты аминокислот

Учитывая высокую потребность сельскохозяйственных животных и птицы в белках, важными биодобавками следует считать аминокислоты, ибо дефицит аминокислот, нарушая биосинтез белка, тормозит рост и развитие, может вызвать различного рода заболевания. С этой целью применяют различные лизинпротеиновые препараты, например, липрот, а также глицин, метионин. Введение липрота в рацион бройлеров сокращает потребление корма животного происхождения в 2 раза, увеличивает привесы птицы на 10 - 20 %, способствует повышению яйценоскости кур-несушек, увеличению массы яиц и улучшению их инкубационных свойств. Глицин нормализует обмен веществ при возникновении транспортного стресса. Ряд положительных эффектов отмечен и при использовании «защищенного» метионина — повышение уровня молочного белка, удоя, снижение частоты кетозов, улучшение биохимических показателей крови и репродуктивных показателей, снижение в молоке числа соматических клеток.

Производство аминокислот. В настоящее время производство аминокислот составляет свыше 500 тыс. т в год, из них глутаминовой кислоты производится 200 тыс. т, метионина 160 тыс. т, лизина 50 тыс. т и т.д. Аминокислоты производятся как микробиологическим (~ 60%), так и химическим путем. Так, химическим синтезом получают D,L-метионин из акролеина, DL-триптофан из индола и нитроуксусного эфира, L-глутамат натрия из акрилонитрила, L-лизин из циклогексанона и др. Однако при химическом синтезе всегда образуются рацематы — смеси D-и L-аминокислот, для разделения которых нужна сложная и дорогостоящая очистка. D-аминокислоты являются балластом, т.к. не усваиваются организмом человека и животного, повышают расходные коэффициенты используемого сырья на 1 т продукции, некоторые из них токсичны. Исключение составляют глицин, у которого нет оптически активных изомеров и метионин, DL- формы которого усваиваются организмом в равной мере.

C 50-х годов XX в. известна способность ауксотрофных мутантов *Brevibacterium*, *Micrococcus*, *Corynebacterium* и др. к сверхсинтезу экстрацеллюлярных аминокислот. Это явилось основанием для создания крупнотоннажного производства L-аминокислот. Так, генноинженерные штаммы-продуценты на основе *E. coli* позволяют за 40 ч ферментации накапливать в среде до 30 г/л L- треонина, до 27 г/л L-пролина, до 22,4 г/л L-фенилаланина.

Известно два способа получения аминокислот: одноступенчатый и двухступенчатый. По первому способу мутантный полиауксотрофный штамм-продуцент аминокислоты культивируют на оптимальной для биосинтеза среде. Целевой продукт накапливается в культуральной жидкости, из которой его выделяют. В двухступенчатом способе на первой ступени микроб-продуцент аминокислоты культивируют в жидкой питательной среде, где происходит биосинтез предшественников аминокислоты (заготовка) и ферментов, катализирующих образование целевого продукта. На второй ступени целевой продукт (аминокислота) синтезируется с помощью этих ферментов.

Лизин в организме животных определяет биологическую ценность перевариваемого белка, способствует секреции пищеварительных ферментов и транспорту кальция в

клетки, улучшает азотистый баланс. В основном весь лизин, производимый в мире микробиологическим синтезом, расходуется на обогащение кормов сельскохозяйственных животных и птицы. Он используется в виде жидкого концентрата лизина (ЖКЛ), кормового концентрата лизина (ККЛ), высококонцентрированных кормовых препаратов лизина.

3.2. Ферментные препараты

В последние годы большой популярностью стали пользоваться ферментные препараты. Так, мацеробациллин Г3х обладает высокой пектатрансэлиминазной и ксиланазной активностью. Его применение при откорме бычков увеличивает среднесуточный прирост на 15,4 %, снижает затраты кормов на 1 кг прироста на 13,4 %, оказывает выраженное стимулирующее влияние на микрофлору рубца, благоприятно влияет на переваримость питательных веществ и эффективность использования корма, на гематологические и биохимические показатели крови, на состояние здоровья молодняка и качество мясной продукции. Близкими в этом отношении оказались целловиридин Г20х, пектофоетидин П10х, протосубтилин Г3х и амилосубтилин Г3х. Например, введение в рацион дойных коров ферментного препарата амилосубтилина ГЗх приводит не только к повышению среднесуточных удоев (на 6,1 - 12,3 %), но и к нормализации сложнейших биохимических процессов: глюконеогенеза и мочевинообразования. Такие мультиэнзимные композиции, как МЭК-1 и МЭК-2 способствуют повышению прироста живой массы телят молочного периода выращивания при снижении затрат кормов. Отечественная биотехнологическая промышленность выпускает и другие мультиэнзимные композиции (МЭК-СХ), которые оказались эффективными по следующим параметрам: лучшее переваривание поступающих питательных веществ, усиление углеводно-липидного и азотистого обменов, увеличение прироста живой массы телят и продуктивности коров, снижение затрат кормов.

Жидкая кормовая добавка фекорд Б, содержащая комплекс гидролитических ферментов — целлюлазу, ксиланазу и β-глюканазу, полученные при ферментации гриба *Trichoderma reesei*, а также смесь биомасс грибов *Trichoderma reesei*, *Aspergillus awamori* и бактерий *Bacillus subtilis*, стимулирует яйценоскость кур, способствует повышению живой массы цыплят, увеличению переваримости питательных веществ корма молодняком крупного рогатого скота.

Лабораторные и научно-хозяйственные опыты доказали целесообразность использования в качестве добавок к рационам сельскохозяйственных животных и птиц таких мультиэнзимных комплексов как авизим и порзим, ронозим, натуфос и натугрейн бленд, био-фид-вит и био-фит-плюс, роксазим G2-гранулят, оллзайм и др.

Производство ферментных препаратов. Технологические процессы производства ферментных препаратов можно разделить на 2 группы: в первом случае ферментация ведется глубинным методом в жидкой питательной среде, во втором — используется поверхностная культура, растущая на специально подготовленной рыхлой и увлажненной питательной среде.

Основные этапы глубинного метода культивирования продуцентов ферментов:

 получение посевного материала: исходная культура продуцента → маточная культура, выращенная в колбах на качалке → посевная культура, выращенная в инокуляторе → посевная культура, выращенная в посевном аппарате. Объем посевного аппарата обычно составляет до 10 % от объема промышленного ферментатора;

- приготовление питательных сред;
- стерилизация питательных сред с помощью мембран или высоких температур;
- очистка воздуха до и после аэрирования;
- производственное культивирование.

Глубинный метод более совершенен, чем поверхностный, так как легко поддается механизации и автоматизации, легче и проще осуществляется переход к большим масштабам производства. Этот процесс должен проходить в строго асептических условиях, а концентрация ферментов в среде при глубинном культивировании обычно значительно ниже, чем в водных экстрактах поверхностной культуры.

При поверхностном методе культура растет на поверхности твердой увлажненной питательной среды. Недостатками метода является необходимость иметь большую поверхность контакта рыхлой среды с воздухом, что часто отражает неинтенсивный характер процесса. Мойка, стерилизация, перемещение кювет с небольшой высотой слоя, их заполнение и освобождение требует больших затрат ручного труда. Выращивание культуры проходит в неасептических условиях. Преимущества поверхностного метода: конечная концентрация фермента на единицу массы среды более высокая, такие культуры легко выращивать и приводить в товарную форму, снижена потребность в электроэнергии и т.д. Культура микроорганизмов, выращенная поверхностным методом, и культуральная жидкость после глубинного культивирования содержит большое количество балластных веществ: биомассу продуцента, непотребленные компоненты среды, продукты метаболизма. Доля собственно ферментов составляет около 1 % для поверхностных и не более 0,1 % – для глубинных культур.

3.3. Витамины

Интенсивного роста и развития, высокой продуктивности и хорошо выраженного конституционального иммунитета удается добиться при оптимальном обеспечении организма животных витаминами: В-каротином, парааминобензойной кислотой, витамином U, витамином Е. Показано, что введение повышенных доз витамина А в рацион коров способствует стабилизации в молоке фракционного состава казеина, сывороточных белков и устойчивости казеинкальцийфосфатного комплекса. Целесообразным оказалось использование повышенных доз витамина Е при тепловых стрессах при выращивании бройлеров. Комплекс фолиевой и аскорбиновой кислот повышает продуктивность свиноматок, нормализует обменные процессы, стимулирует естественные защитные силы организма, а также инициирует многоплодие. Двойная норма витаминов B_{12} и фолиевой кислоты оказывает положительное влияние на сперматогенез птицы, увеличивает объем и общее количество спермиев в эякуляте, что способствует повышению оплодотворяемости яиц и процента вывода цыплят. Более высоких показателей продуктивности и естественной резистентности животных можно добиться при комплексном использовании витамина С и протосубтилина ГЗх, витамина U и смеси ферментных препаратов пектофоетидина П10х и протосубтилина Г3х, витамина К4 и цеолита, витамина B_{12} и кобальта.

Производство витаминов. Биотехнологическим путем производят витамин A, D, B_2 , B_{12} C и др.

Каротиноиды (предшественники витамина A) синтезируются пигментными микроорганизмами из рода Fusarium, Pseudomonas, Sarcina др. Всего известно около 500 каротиноидов, которые продуцируются бактериями, дрожжами и мицелиальными грибами. Они находятся в клеточной мембране микроорганизмов в виде сложных эфиров и

гликозидов или в свободном состоянии – в липидных гранулах цитоплазмы.

В основе витамина D лежит скелет эргостерина, который находится в клеточных мембранах эукариот. Так, пекарские или пивные дрожжи содержат 0,2-11 % эргостерина. Под влиянием УФО эргостерин трансформируется в витамин D_2 , который легко переходит в D_3 . Продуцентами эргостерина также являются аспергиллы и пенициллы. В них содержится 1,2-2,2 % эргостерина. Облученные сухие дрожжи используют в животноводстве. В нихсодержится не менее 46% сырого белка, незаменимые аминокислоты (лизин, метионин, триптофан.) и 5000 МЕ витамина D_2/Γ .

Витамин B_2 (рибофлавин) продуцируется бактериями, дрожжами и нитчатыми грибами. В настоящее время получают до 0.5 г и более рибофлавина в 1 л среды.

Витамин С синтезируют все растения и животные, кроме обезьян и морских свинок, а также человека. Микроорганизмы витамин С не синтезируют и в нем не нуждаются. Аскорбиновую кислоту получают химико-ферментативным способом. Так, некоторые виды уксуснокислых бактерий образуют полупродукт аскорбиновой кислоты — L-сорбозу. Затем проводят химическую стадию. В результате получается 2-кето-L-гулоновая кислота. Ее подвергают энолизации и трансформируют в L-аскорбиновую кислоту. L-сорбозу также получают ферментацией Gluconobacter oxydans на средах, содержащих сорбат, кукурузный или дрожжевой экстракт при интенсивной аэрации. Выход L-сорбозы составляет 98 % за 2 суток. Культивирование проводят в периодическом или непрерывном режиме.

Витамин B_{12} (цианкобаламин) продуцируют пропионовые бактерии — Propionibacterium var. Shermanii. На ацетобутиловой и спиртовой бардах с добавлением кобальта и метанола получают кормовой препарат, который содержит витамин B_{12} и другие ростовые факторы. Здесь биообъектом является смешанная культура метаногенных бактерий.

3.4. Пробиотики

Пробиотики — это живые, специально подобранные штаммы микроорганизмов или специфические субстанции микробного, растительного или животного происхождения. Иными словам, пробиотики — это биологические препараты, представляющие собой стабилизированные культуры симбионтных микроорганизмов или продукты их ферментации, которые способствуют росту последних и обладают разносторонним действием (таблица 1).

Так, в первые дни жизни животных пробиотические препараты вводят в заменители молока. Разработаны технологии приготовления сухих заменителей цельного молока с добавлением молочнокислых бактерий, ацидофильной палочки, пропионовокислых бактерий. Испытано профилактическое действие препарата галако (смесь гаммаглобулина, живых лактобацилл и непатогенных штаммов кишечной палочки, высушенных лиофильно с сухим молоком в качестве наполнителя) при заболеваниях пищеварительного тракта телят. Дача ацидофильного молока цыплятам, поросятам и телятам, способствует не только снижению кишечных заболеваний, но и увеличению привесов. Аналогичные данные получены, если цельное молоко заквашивали молочнокислыми бактериями (Str. lactis, Str. cremoris, Str. diacetilactis и L. acidophilus в соотношении 1:1:1:1).

Пробиотические микроорганизмы применяют и для приготовления кормосмесей. Так, при обработке корма для свиней закваской Леснова происходит биотрансформация клетчатки микроорганизмами, синтезируются витамины группы B, а также D, E, K,

микробный белок. Все это повышает у животных переваримость сырого протеина и сырого жира, сухого и органического вещества, улучшает использование азота, увеличивает мясную продуктивность. Приведем другой пример. При использовании живой культуры слизистых бацилл (*Bac. mucilagenosus*) для силосовании кукурузы получен высококачественный силос, который повышает молочную продуктивность первотелок на 3,1 %, а содержание белка в молоке – на 3,6 %.

Таблица 3.1 - Спектр активности пробиотиков

Действие	Процессы, обеспечивающие это действие
Подавление роста патогенных и условно-патогенных микроорганизмов	Синтез веществ, обладающих антибиотическими свойствами (антибиотики, лизоцим, пептиды с антибиотическими свойствами и др.), снижение рН среды, высокая конкурентная способность в процессе размножения
Нормализация пищеварения	Синтез пектолитических, протеолитических ферментов, липазы
Стимуляция неспецифической	Стимуляция лимфоцитов, макрофагов, индукция эндоген-
резистентности макроорганизма	ного и ү-интерферона, увеличение содержания гамма- глобулиновой фракции крови
Антитоксическое действие	Дезинтеграция высокомолекулярных белков. Способность связывать тяжелые металлы
Антиаллергическое действие	Расщепление аллергенов на биологически инертные субъединицы
Восстановление эндогенной микрофлоры, коррекция микробиоценоза	Филогенетическая общность представителей нормальной симбионтной микрофлоры
Синтез заменимых и незаменимых аминокислот и витаминов	Экзоцеллюлярная продукция треонина, глутаминовой кислоты, аланина, валина, тирозина, гистидина, орнитина и др.
Выведение тяжелых металлов	Способность к повышенной сорбции тяжелых металлов и
и радионуклидов	радионуклидов в сочетании с быстрой элиминацией
Противоопухолевая и антиметастатическая активность	Стимуляция естественных киллерных клеток и Т-лимфоцитов, стимуляция макрофагов

Показано, что пропиовит созданный на основе пропионовокислых бактерий усиливает рост и повышает продуктивность птицы, поросят, телят, на 2 - 12 %, облегчает и ускоряет адаптацию животных к различным стресс-факторам. Он эффективен для профилактики желудочно-кишечных заболеваний и при нарушениях минерального обмена. Препараты на основе ацидофильной палочки положительно влияют на яйценоскость, качество яиц и микрофлору пищеварительного тракта птицы. Лиофилизированной культурой ацидофильной палочки является препарат биобактон. Использование биобактона увеличивает сохранность поросят-гипотрофиков, на 3 - 11 %, скорость роста, на 5 - 7 %, нормализует основные показатели периферической крови, способствует снижению затрат на приобретение кормов. Применение культуры молочнокислого стрептококка повышает устойчивость поросят к кишечным болезням. У телят отмечено увеличение живой массы тела, в среднем на 5,3 %, уменьшение частоты диареи, снижение падежа.

Высокую практическую значимость в АПК, в частности в животноводстве, имеют и другие монокомпонентные пробиотики: лактоамиловорин на основе чистой культуры антагонистического штамма лактобациллы, выделенной из химуса слепой кишки поро-

сят, бифидосодержащий препарат бифинорм, целлобактерин, представляющий собой ассоциацию целлюлозолитических микроорганизмов, выделенных из нормальной микрофлоры пищеварительного тракта молодняка жвачных животных, каротинобактерин на основе штамма *Rhodococcus* ВКПМЅ-916, токарин на основе токоферолсинтезирующего штамма № 100, стрептофагин, содержащий бактериофаги, бактисубтил на основе *В. cereus* IP 5832 и др. Показано, например, что введение в комбикорма для гусят лактоамиловорина оказало благоприятное влияние на эритропоэз, синтез гемоглобина и обеспечение кислородом обменных процессов. Валовой сбор перопухового сырья увеличился на 7 %, улучшилось качество мяса, в котором стало больше белка, меньше жира и холестерина. Скармливание этого пробиотика оказывает положительное влияние и на биохимические процессы в печени цыплят.

Включение лактоамиловорина в рацион хряков-производителей улучшает их репродуктивные качества, оплодотворяемость свиноматок спермой таких хряков возрастает до 83 - 90 %, против 77 % в контроле. Скармливание лактоамиловорина холостым свиноматкам увеличивает выход живых поросят на 10,8 % и массу гнезда — на 8,9 %. Лактоамиловорин обеспечивает профилактическое (до 86 %) и лечебное действие при диарейных заболеваниях поросят и телят, повышает их сохранность до 95 - 100 % и увеличивает прирост живой массы, на 20 - 30 %.

Приведем еще несколько примеров. Пробиотик целлобактерин предназначен в качестве кормовой добавки для животноводства. Он повышает эффективность использования грубых кормов. Введение в рацион кур-несушек пробиотика целлобактерина позволяет значительно увеличить продуктивность, общую массу снесенных яиц и не уступает по эффективности кормовым ферментным препаратам. При добавлении в корм поросятам целлобактерина среднесуточный прирост их живой массы был выше на 26,8 %, чем у группы аналогов, выращенных по стандартной технологии с применением смеси кормовых антибиотиков медикато. Сохранность опытных поросят составила 83,4 %, а контрольных – 75,3 %. Ежедневное скармливание бычкам сухого целлобактерина увеличило общее количество микроорганизмов и простейших в рубце и их активность, способствовало лучшему поеданию грубых кормов, переваримости сухого вещества и, как следствие, увеличению среднесуточного привеса.

Многие авторы считают весьма перспективным обогащение кишечной микрофлоры животных не одной культурой, а целым рядом специально подобранных штаммов, иными словами использование комплексных пробиотиков. Так, разработаны и внедрены следующие поликомпонентные пробиотические препараты: субтилис и биод-5, содержащие различные штаммы *B. subtilis* и *B. licheniformis*, пропиацид на основе пропионовокислых и ацидофильных микроорганизмов, лактобифадол, в состав которого включены ацидофильные и бифидобактерии, лактицид на основе *L. acidophilus*, *L. fermentum* и *Str. faecium*, СБА, содержащий бифидобактерии, фекальный стрептококк и ацидофильную палочку, лаком, в состав которого включены *L. acidophilus*, *P. shermanii*, *Str. faecium* и *Str. diacetylactis*, выпущены опытные партии препарата реалак, содержащего *L. acidophilus*, *L. fermentum*, *Bif. globosum* и автолизат дрожжей *Saccharomyces cerevisiae* и др.

На основе новейших биотехнологических разработок создана натуральная кормовая добавка естур, состоящая из живых культур Saccharomyces cerevisiae высокой ферментативной активности, Lactobacillus acidophilus, Lactobacillus casei, Streptococcus faecium, Bacillus subtilis, а также ферментов, аминокислот, минералов, полисахаридов. Применение этого пробиотика увеличивало среднесуточный прирост телят, на 10,3 - 21,9 %, среднесуточный удой молока, на 10,7 - 11,3 %, а его жирность, на

0,32 - 0,52 %, способствовало снижению числа соматических клеток в молоке, в среднем, в 2,3 раза. В рубце таких телят увеличивалось общее количество микроорганизмов на 74,3 %, инфузорий – на 41,2 %.

3.5. Использование отходов технических производств в кормлении животных

Производства по переработке пищевого сырья дают большое количество отходов, которые, в том числе и после биотехнологической модификации, представляют определенную кормовую ценность для сельскохозяйственных животных и птицы.

Крахмальное производство. При производстве крахмала из картофеля клубни растирают на терках в кашу. Далее из нее на ситах вымывают водой крахмал. При этом зерна крахмала проходят с водой через сито, а на сите остаются клеточные оболочки с небольшим количеством крахмала. Это *мезга*. Из 100 ц картофеля в среднем получается 75 ц мезги. Мезга содержит до 86 % воды, 10 - 12 % безазотистых экстрактивных веществ, немного клетчатки, протеина и золы. Мезгу скармливают в основном крупному рогатому скоту и свиньям в сыром или вареном виде от 10 до 30 кг в день. Возможно силосование мезги. Мезга влажностью 70 - 75 % силосуется хорошо, особенно с применением закваски из молочнокислых бактерий.

Спиртовое производство. Технологический процесс производства спирта состоит в осахаривании крахмала солодом и в переводе сахара в спирт при брожении под действием дрожжей. Результат брожения – зрелая бражка, из которой отгоняют спирт и в остатке получают барду. В среднем из сухого вещества сырья (крахмалистый продукт, солод и дрожжи) в барду переходит около трети. В зависимости от материала, взятого для приготовления спирта (картофель, рожь, кукуруза, патока), кормовое достоинство барды различно. Все виды барды содержат в свежем состоянии 92 - 94 % воды. Сухое вещество хлебной и картофельной барды богато белком (20 - 25 %), бедно жиром и клетчаткой, в небольшом количестве содержит свободные органические кислоты. Барда, получаемая при переработке на спирт патоки, отличается высоким содержанием небелковых азотистых соединений и минеральных веществ, особенно калия. Хлебную и картофельную барду используют преимущественно для кормления крупного рогатого скота. Взрослым животным дают 70 - 80 л барды в сутки, молочным коровам – 25 - 35 л, рабочим лошадям – 12 - 18 л. Скармливают барду обычно свежей, так как на воздухе она быстро закисает, покрывается плесенью, загнивает. Свежая барда содержит 0,4-0.5% свободных молочной и уксусной кислот, pH -4.2-4.4. При такой активной кислотности барда может сохраниться, если ее изолировать от воздуха. Консервируют барду путем силосования. Свежую барду с завода направляют по бардопроводу в ямы или траншеи, при этом жидкость уходит в почву или ее сливают после отстоя, а гуща остается в яме. Яму постепенно заполняют доверху сгущенной бардой. Для изоляции от воздуха над поверхностью осевшей гущи оставляют слой жидкости (около 15 см). В силосованной барде содержание сухого вещества повышается до 18 - 22 %. Барду можно силосовать с сухими кормами, например, с соломенной резкой.

Пивоваренное производство. Производство пива слагается из приготовления солода, варки сусла и его сбраживания. Солод готовят из ячменя. При этом зерно намачивают и проращивают в течение 7 - 10 дней. Проросшие зерна ячменя — зеленый солод — высушивают, с них удаляют ростки, которые содержат вещества, ухудшающие вкус пива. При высушивании ростки становятся хрупкими и легко сбиваются трением зерен друг о друга во вращающемся цилиндре. Отбитые ростки отделяют просеиванием на ситах и используют как кормовое средство под названием *солодовые ростки*. Солодо-

вые ростки содержат около 11 % воды, до 24 % сырого протеина. По общей питательности солодовые ростки значительно уступают зерну и отрубям. Солодовые ростки содержат бетаин и холин. Они придают продукту слегка горьковатый вкус, из-за которого животные не всегда сразу и охотно едят данный корм, но постепенно к нему привыкают. Скармливают ростки размоченными, в виде густой каши молочным коровам, молодняку и свиньям.

Пивная дробина в сыром виде содержит около 75 % воды. Ее сухое вещество состоит из плодовых и зерновых оболочек и прочих остатков ячменя, нерастворимых в воде. Так как на приготовление пивного сусла идут углеводы зерна, то сухое вещество пивной дробины значительно богаче протеином (около 25 %), чем исходный материал. Свежую пивную гущу по 12 - 16 кг в сутки скармливают молочному скоту, свиньям. При хранении пивная гуща быстро портится. На крупных заводах свежую пивную дробину иногда сушат. Сушеная дробина является хорошим концентрированным кормом. Она близка по составу и общей питательности к пшеничным отрубям.

Пивные дрожжи — ценный кормовой продукт пивоваренного производства. В свежем виде они содержат около 85 % воды. В сухом веществе около 50 % составляет протеин. Сухие дрожжи занимают первое место среди кормов по содержанию легкопереваримого белка. Белок дрожжей по биологической ценности считают близким к животным белкам. Дрожжи служат источником витаминов комплекса B. В дрожжах содержатся ферменты (протеазы, нуклеазы и др.), которые возбуждают аппетит животных. Сырые дрожжи дают молочному скоту по 10 - 20 кг в сутки, свиньям -1 - 5 кг. Сухие дрожжи считаются хорошим кормом для всех животных, особенно для свиней: свиньям дают 200 - 600 г в день, молочным коровам — до 2 кг.

Свеклосахарное производство. При производстве сахара свеклу измельчают в тонкие стружки, которые загружают в большие сосуды – диффузоры. Там из свекольной стружки сахар вымывается горячей водой. Получается диффузионный сок, который идет на дальнейшую переработку. В диффузорах остаются диффузионные остатки, или жом. Диффузионный сок сгущают увариванием в вакуум-аппаратах, пока из него не выкристаллизуется сахар. Получается густая масса – утфель. Она состоит из кристаллов сахара и светло-бурой липкой жидкости – патоки. Сахар от патоки отделяют в центрифугах. При этом последовательно получается сахарный песок разных сортов: от желтого до белого. Стекающая с желтого песка густая темная патока, содержащая труднокристаллизующийся сахар, является отходом производства и продается с заводов как кормовой продукт. Таким образом, кормовая патока является сгущенным и в значительной степени обессахаренным свекловичным соком. Свежий жом содержит до 93 % воды. Его сухое вещество состоит преимущественно из углеводов, хорошо переваримо. По общей питательности жом близок к наиболее водянистым корнеплодам. Жом очень беден фосфором, в нем отсутствуют витамины A и D. Содержание кальция удовлетворительное. На заводах жом складывают в ямы, где он подвергается самозаквашиванию. Улучшить качество такого корма и снизить потери питательных веществ можно частичным обезвоживанием жома (до влажности 70 - 75 %), внесением чистых культур молочнокислых бактерий, устройством хороших ям и тщательной изоляцией жома от воздуха. Кислый жом богаче свежего сухим веществом (около 12 %) и содержит много органических кислот. Он охотнее поедается скотом, чем сладкий свежий. Некоторые заводы сушат жом, снижая содержание воды в нем до 10 - 12 %, такой продукт хорошо хранится, но беден белком (3,6 %) и поэтому не может заменить концентрированные корма (отруби, жмыхи, зерно). Как свежий, так и кислый жом используют для откорма скота: в среднем в сутки животные могут получать 50 - 60 кг продукта,

сушеного жома дают молочным коровам 4 - 6 кг в зависимости от удоя.

ПРАКТИЧЕСКАЯ ЧАСТЬ

ИССЛЕДОВАНИЕ ХИМИЧЕСКОГО СОСТАВА КОРМОВЫХ ДОБАВОК. КАЧЕСТВЕННЫЕ РЕАКЦИИ НА ВИТАМИНЫ

ЦЕЛЬ: сформировать навык исследования химического состава кормовых добавок (на примере кормовых дрожжей)

Оборудование

- 1. Газовая горелка.
- 2. Пробирки.
- 3. Пипетки.
- 4. Стеклянная палочка.

Реактивы

- 1. Эфир.
- 2. Анилиновый реактив (15 частей анилина и 1 часть концентрированной соляной кислоты).
- 3. Концентрированная соляная кислота.
- 4. Цинк металлический.
- 5. 5% раствор сульфата меди.
- 6. 5% раствор хлорида железа (III).
- 7. 20% раствор серной кислота.

Ход анализа

Предварительно в химическую пробирку помещают 8 г кормовых дрожжей и, проверив, что в лаборатории погашены все горелки и нет включенных электроплиток, добавляют 2-4 мл эфира для разрушения клеточных оболочек. Содержимое пробирки растирают стеклянной палочкой. Эфир разрушает оболочки дрожжевых клеток.

Витамин D. К 2 мл полученной из дрожжей массы прибавляют 1-2 капли анилинового реактива, перемешивают и нагревают. Появляется красно-бурое окрашивание.

Витамин B_2 . К 2 мл гидролизата дрожжей добавляют 0,5 мл концентрированной соляной кислоты и небольшой кусочек металлического цинка. Начинается бурное выделение пузырьков водорода, жидкость постепенно окрашивается в красный цвет, затем окраска бледнеет.

Кислота никотиновая. К 3 мл теплого гидролизата дрожжей приливают 1 мл 5% раствора сульфата меди. Выпадает осадок синего цвета.

Витамин В₆. К 1 мл гидролизата дрожжей прибавляют 2 капли 5% раствора хлорида железа (111), появляется красное окрашивание, исчезающее при добавлении 20% серной кислоты.

СПИСОК ЛИТЕРАТУРЫ

1. Общая биотехнология: методические указания к лабораторным работам / сост.: В.А. Блинов, С.Н. Буршина. – Саратов: «РИК «Полиграфия Поволжья», 2004. – С. 17-20, 72-75.

Вопросы для самоконтроля

- 1) Значение аминокислот в рационе сельскохозяйственных животных и птицы.
- 2) Какие аминокислоты используются для обогащения кормов для сельскохозяйственных животных и птицы?
 - 3) Биотехнологические аспекты получения аминокислот.
- 4) Какие фементные препарты используются в качестве кормовых добавок к рационам сельскохозяйственных животных и птицы?
 - 5) Биотехнологические особенности производства ферментных препаратов.
 - 6) Роль ферментных препаратов в рационе сельскохозяйственных животных и птицы.
- 7) Целесообразность обогащения кормов для сельскохозяйственных животных и птицы витаминами.
 - 8) Какие витамины производят микробиологическим путем?
 - 9) Дайте определение термину «пробиотики».
- 10) Какое действие оказывают пробиотики на организм сельскохозяйственных животных и птицы?
- 11) Приведите примеры пробиотических препаратов, используемых в животноводстве и птицеводстве.
- 12) Использование отходов крахмального производства в кормлении сельскохозяйственных животных.
 - 13) Какие отходы спиртового производства представляют кормовую ценность?
 - 14) Какие кормовые продукты дает пивоваренное производство?
 - 15) Какие отходы свеклосахарного производства являются кормовыми продуктами?

СПИСОК ЛИТЕРАТУРЫ

Основная

- 1. *Фаритов*, *Т.А.* Корма и кормовые добавки для животных: учебное пособие / Т.А. Фаритов. СПб.: Лань, 2010. 304 с. ISBN 978-5-8114-1026-2
- 2. *Фасинин, В.И.* Кормление сельскохозяйственной птицы: учебник / В.И. Фасинин, И.А. Егоров, И.Ф. Драганов. М.: ГЭОТАР Медиа, 2011. 344 с. ISBN 978-5-9704-1996-0

Дополнительная

- 1. Биологические препараты. Сельское хозяйство. Экология: Практика применения / ООО «ЭМ-Кооперация» / сост.: Костенко Т.А., Костенко В.К.; под. ред. П.А. Кожевина. Саранск: ГУП РМ «Республиканская типография «Красный Октябрь», 2008. 296 с. ISBN 978-5-7493-1236-2
- 2. Биотехнология: реальность и перспективы в сельском хозяйстве: Материалы Международной научно-практической конференции (К 100-летию СГАУ имени Н.И. Вавилова). Саратов: Издательство «КУБиК», 2013. 286 с. ISBN 978-5-91818-278-1
- 3. *Блинов, В.А.* Общая биотехнология: Курс лекций. В 2-х частях. Ч. 2. Саратов: Φ ГОУ ВПО «Саратовский СГАУ», 2004. 144 с. ISBN 5-7011-0436-2
- $4.\ \mathit{Блинов},\ \mathit{B.A.}$ Пробиотики в пищевой промышленности и сельском хозяйстве / В.А. Блинов, С.В. Ковалева, С.Н. Буршина. Саратов: ИЦ «Наука», 2011. 171 с. ISBN 978-5-9999-0927-5

- 5. *Блинов*, B.A. ЭМ-технология сельскому хозяйству / B.A. Блинов. Саратов, 2003. 205 с.
- 6. *Елинов, Н.П.* Основы биотехнологии / Н.П. Елинов. СПб.: Наука, 1995. ISBN 5-02-026027-4
- 7. *Никульников*, *B*.С. Биотехнология в животноводстве: учебное пособие / В.С. Никульников, В.К. Кретинин. М.: Колос, 2007. 544 с. ISBN 978-5-10-003966-2
- 8. Ситников, В.В. Использование микроорганизмов-пробионтов в выращивании птицы: монография / В.В. Ситников. Саратов: ФГОУ ВПО «Саратовский ГАУ», 2010.-106 с. ISBN 978-5-7011-0586-5
- 9. Журналы: Аграрный научный журнал, Ветеринария, Ветеринария и кормление, Ветеринария сельскохозяйственных животных, Главный зоотехник, Животноводство России, Зоотехния, Коневодство и конный спорт, Кормление сельскохозяйственных животных и кормопроизводство, Кормопроизводство, Кролиководство и звероводство, Овцы, козы, шерстяное дело, Птицеводство, Свиноводство, Биотехнология.
- 10. Базы данных, информационно-справочные и поисковые системы, Агропоиск, полнотекстовая база данных иностранных журналов Doal, поисковые системы Rambler, Yandex, Google:
- Адаптивное кормопроизводство: Международный научно-практический электронный журнал ВНИИ кормов им. В.Р.Вильямса; ссылка доступа http://adaptagro.ru/index.php?option=com_content&view=article&id=57&Itemid=73&lang=ru
 - Биотехнологический портат Bio-X (ссылка доступа http://bio-x.ru)
- Журнал «Биотехнология» (аннотации статей) (ссылка доступа http://www.genetika.ru/journal)
 - Интернет-журнал «Коммерческая биотехнология» (ссылка доступа http://cbio.ru)
- Научная электронная библиотека eLIBRARY.RU: журналы раздела тематического рубрикатора «Биотехнология» (ссылка доступа – http://elibrary.ru/rubric_titles.asp?rcode=620000)
- On-line-журнал «Биотехнология. Теория и практика» (ссылка доступа http://www.biotechlink.org)
- Электронно-библиотечная система СГАУ: каталог диссертаций и автореферетов; область поиска биотехнология); ссылка доступа http://library.sgau.ru/cgibin/irbis64r_01/cgiirbis_64.exe)
 - 11. Нормативно-правовая литература:
- Комплексная программа развития биотехнологий в Российской Федерации на период до 2020 года / утверждено председателем правительства Российской Федерации В. Путиным 24 апреля 2012 г. № 1853п-П8. М., 2012. 76 с. (ссылка доступа http://www.nacles.ru/ftpgetfile.php?id=247)
- Рабочие материалы к стратегии развития биотехнологической отрасли промышленности до 2020 года / Общество биотехнологов России им. Ю.А. Овчинникова. Союз предприятий биотехнологической отрасли. М., 2009. 85 с. (ссылка доступа http://www.biorosinfo.ru/papers-society/Strategy_Bioindustry.pdf)
- Тенденции развития промышленного применения биотехнологий в Российской Федерации / Институт биохимии им. Н.А. Баха РАН. М., 2011. 323 с. (ссылка доступа http://sedi2.esteri.it/Sitiweb/AmbMosca/Pubblicazioni/Faldoni/biotecnologierus.pdf)

Тема 4

БИОЛОГИЧЕСКИЕ СПОСОБЫ ПОВЫШЕНИЯ УРОЖАЙНОСТИ КОРМОВЫХ КУЛЬТУР

4.1. Бактериальные удобрения

Удобрения – это вещества, которые улучшают питание растений и свойства почвы.

Ежегодно во всем мире в почву в виде минеральных удобрений вносится около 60 млн. т азота, фосфора, калия. Они накапливаются в почве и грунтовых водах, отрицательно влияют на состояние микробного сообщества почвы, вызывают потерю гумуса, нитратное загрязнение кормов и продуктов питания, рост онкологических заболеваний животных и человека. Например, хлористые, сернистые, азотные соединения повышают кислотность воды и почвы.

Альтернативой химизации сельского хозяйства являются естественные, биологические технологии. В этом отношении перспективным является использование микробных землеудобрительных препаратов, или бактериальных удобрений.

Бактериальные удобрения содержат монокультуру или комплекс микроорганизмом, которые способствует накоплению в почве элементов питания растений, стимулируют их рост и развитие, обладают антагонистической активностью по отношению к фитопатогенам.

Преимущества бактериальных удобрений перед химическими средствами: поддержание и сохранение окружающей среды; получение экологически чистой продукции; сохранение всех взаимосвязей и цепей биосферы, созданных природой; биологизация землемледелия; восстановление плодородия почвы и пр.

В 1888 г. М. Бейеринк выделил чистую культуру клубеньковых бактерий *Rhizobium* бобовых растений. После этого стали производиться первые микробные землеудобрительные препараты.

В настоящее время известны следующие бактериальные удобрения:

- препараты на основе симбиотических азотфиксирующих бактерий (нитрагин, ризоторфин)
- препараты на основе несимбиотических азотфиксирующих бактерий (флавобактерин, ризоэнтерин, агрофил, ризоагрин, азотобактерин, ризобактерин, экстрасол и др.)
 - фосфоробактерин
 - биологически активный грунт АМБ
 - грибы-микоризообразователи

Нитрагин и **ризоторфин** производятся на основе активных жизнеспособных бактерий из рода *Rhizobium*. Они усваивают азот атмосферы и переводят его и связанную форму, которая доступна для питания растений. Растения снабжают бактерии энергией, которая необходима для фиксации азота. Таким образом, возникает симбиоз бактерий и бобовых культур. Это обеспечивает благоприятные условия азотного питания и повышение урожайности. Фиксация атмосферного азота возможна только в клубеньках, которые образуются на корнях растений.

Выпускается два вида нитрагина – почвенный и сухой.

Почвенный нитрагин впервые был получен в 1911 году на бактериально-агрономической станции в Москве. В настоящее время его производство ограничено из-за сложной и трудоемкой технологии.

Более перспективен сухой нитрагин. Это высушенная биомасса жизнеспособных

бактерий в смеси с наполнителем (тиомочевина и меласса).

При использовании нитрагина повышается урожайность бобовых растений — на 15-20%, в растениях увеличивается содержание белка — на 3-5%.

В 1973-1977 г.г. была создана технология торфяного препарата клубеньковых бактерий — ризоторфина. При этом торф сушат, размалывают в порошок, нейтрализуют мелом, стерилизуют облучением гамма-лучами, увлажняют до 30-40% и расфасовывают в полиэтиленовые пакеты. Затем его облучают и заражают клубеньковыми бактериями с помощью шприца. Ризоторфином обрабатывают семена бобовых культур (гороха, люпина, сои, люцерны, клевера и др. при посеве).

Флавобактерин и **ризоэнтерин** усиливают поглотительную способность корней, что улучшает минеральный и водный обмен растений, стимулирует рост растений, являются антагонистами микроорганизмов-фитопатогенов. Повышают в продукции содержание сырого белка — на 1,5-2%, аскорбионовой кислоты — на 15-20%.

Aзотобактерин — бактериальное удобрение, содержащее свободно-живущий почвенный микроорганизм азотобактер — Azotobacter chroococcum. Азотобактер способен усваивать до 10-15 кг атмосферного азота в год на 1 га пахотного слоя земли. Большое количество белкового азота появляется в почве при отмирании бактерий.

Эти бактерии выделяют биологически активные вещества (никотиновую и пантотеновую кислоты, пиридоксин, биотин, гетероауксин, гиббереллин и др.), которые стимулируют рост растений; фунгицидные вещества, которые угнетают развитие некоторых нежелательных микроскопических грибов в ризосфере растения.

Азотобактер способствует поступлению в растения соединений фосфора; стимулирует развитие почвенной микрофлоры, которая необходима для корневого питания; он использует корневые выделения, продукты распада растительных остатков и соединений образующихся в результате минерализации перегноя в качестве дополнительного источника углерода и энергии.

Выпускается несколько видов азотобактерина: сухой, почвенный и торфяной.

Сухой азотобактерин – это активная культура высушенных клеток азотобактера с наполнителем. В 1 г препарата содержится не менее 0,5 млрд. жизнеспособных клеток.

Почвенный и торфяной азотобактерин представляют собой активную культуру азотобактера, размноженную на твердой питательной среде. В 1 г содержится не менее 50 млн. жизнеспособных клеток.

Азотобактерин применяют для обработки семян, рассады, компостов. При этом урожайность увеличивается на 10-15%.

Ризобактерин — создан на основе штамма *Klebsiella planticola S*. Он обладает высокой азотфиксирующей активностью, продуцирует β -индолилуксусную кислоту и подавляет развитие корневых фитопатогенов Ризобактерин повышает урожайность зерновых культур в среднем на 23%.

Экстрасол — содержит индивидуальные штаммы или несколько видов ризосферных азотофиксирующих бактерий и их метаболиты, которые предназначены для данного вида или сорта растений, что определяется экспериментальным путем. Представляет собой сухую или увлажненную массу или бактериальную суспензию. В 1 г содержится не менее 100 млн. бактериальных клеток.

Экстрасол улучшает поступление элементов питания в растения, увеличивает энергию прорастания семян, ускоряет развитие растений, снижает поражаемость растений фитопатогенными микроорганизмами.

Несимбиотическую азотфиксацию можно усилить внесением в почву ассоциативных азотфиксирующих бактерий и микоризных грибов; цианобактерий и водного папо-

ротника.

Фосфоробактерин – порошок светло-серого или желтоватого цвета, содержит споры капустной палочки *Bacillus megaterium var. phosphaticum*.

Эти бактерии превращают сложные фосфорорганические соединения (нуклеиновые кислоты, нуклеопротеиды и т.д.) и трудноусвояемые минеральные фосфаты в доступную для растений форму; вырабатывают биологически активные вещества (тиамин, пиридоксин, биотин, пантотеновую и никотиновую кислоты и др.), стимулирующие рост растения.

Фосфоробактерин эффективен на богатых органикой почвах и благоприятно действует на корневую систему, его рекомендуют для улучшения роста кустарников и древесных растений.

Биологически активный грунт АМБ (автохронная микрофлора «Б») используется при создании грунта в теплицах и парниках для выращивания овощных культур и рассады, а также для активации биохимических процессов северных почв (автохронная микрофлора «Б»). В АМБ входят бактерии разлагающие белки и белково-подобные соединения, фосфорсодержащие органические соединения, целлюлозолитические, азотфиксирующие, нитрифицирующие бактерии и др.

Технология удобрения АМБ сложная и громоздкая. При этом в кислый торф вносят известковый материал, минеральные добавки и маточную культуру АМБ из расчета 1-2 кг/т, затем идет созревание грунта на местах его использования. Расход АМБ — до 500 кг/т.

Грибы-микоризообразователи улучшают водообеспечение и минеральное питание растений, продуцируют биологически активные вещества (витамины, фитогормоны, антибиотики), противостоят фитопатогенным микроорганизмам. Так, полевые культуры образуют нормальную микоризу самостоятельно. Микоризация используется при инокуляции семян и саженцев древесных пород. Грибы-микоризообразователи трудно культивировать искусственно, поэтому для микоризации чаще применяют лесную почву, которая содержит споры и мицелий таких грибов.

4.2. Гормоны растений (фитогормоны)

Растительные гормоны, или фитогормоны — это химические вещества, вырабатываемые в растениях и регулирующие их рост и развитие

Имеют следующие особенности: эндогенное происхождение — образуются из органических кислот, в частности, из аминокислот; действуют не только в местах образования, но и на расстоянии от них, т.е. транспортируются по растениям; действуют в малых концентрациях.

Фитогормоны менее специфичны, чем гормоны животных, проявляют однотипное действие на одни и те же метаболические процессы: растяжение клеток или подавление их роста за счет торможения ионного транспорта; влияние на синтез ферментов и их активность; изменение проницаемости мембран растительных клеток; активация или ингибирование процессов биосинтеза РНК и белка.

В настоящее время известно семь групп фитогормонов: ауксины, гиббереллины, цитокинины, абсцизовая кислота, этилен, брассиностероиды, фузикокцины.

Ауксины были открыты в 20-е годы XX века как фактор тропизмов растений. Химическая природа — индолил-3-уксусная кислота (ИУК). Стимулируют образование корневой системы у черенков, применяют при выращивании плодовых деревьев — для удаления избыточных завязей, при выращивании зерновых культур — для уничтожения

сорняков.

Гиббереллины были открыты в 1926 г. В 1938 г. в Японии они были выделены как продукты патогенного гриба *Gibberella fujjcuroi*, которые вызывают чрезмерный вегетативный рост риса. Химическая природа – дитерпеноиды, состоящие из четырех изопреновых остатков. Известно около 70 представителей, в т.ч. 45 – выделены из растений. Применяют для повышения урожайности некоторых сортов винограда, для защиты ягод от фитопатогенных грибов. Способны выводить семена и клубни из состояния покоя.

Цитокинины были открыты в 1955 г. как факторы, стимулирующие деление клеток. Известно 13 представителей. Химическая природа — производные 6-аминопурина. Задерживают старение листьев, регулируют формирование хлоропластов, повышают устойчивость клеток растений к неблагоприятным воздействиям (повреждающим температурам, недостатку воды, повышенной засоленности, рентгеновскому излучению, воздействию пестицидов). Способны выводить семена и клубни из состояния покоя.

Этилен — бесцветный газ, растворимый в воде. В 1901 г. Д.Н. Нелюбов из Петер-бургского университета сообщил о том, что этилен, входящий в состав светильного газа, стимулирует опадение листьев и нарушает фототропизм проростков гороха. В 1934 г. этиле был обнаружен в газообразных выделениях хранящихся яблок. Это послужило основанием для того, чтобы считать его фитогормоном. Его синтезируют грибы и высшие растения. По мере старения тканей синтез этилена увеличивается. Этот гормон стимулирует процессы опадания листьев и плодов. Этилен и его производные применяют для ускоренного созревания плодов. Разработан препарат э с т р е л, который при попадании в растение выделяет этилен. Эстрел применяют для регуляции созревания томатов, вишен и других овощей и фруктов. Стимулирует образование абсцизовой кислоты.

Абсцизовая кислота (АБК) выделена в 1964 г. из молодых коробочек хлопчатника. Химическая природа — секвитерпен, синтезируется из мевалоновой кислоты во всех органах растений. Является антагонистом других фитогормонов. Обладает мощным ингибиторным действием — ускорят распад нуклеиновых кислот, белков, хлорофилла. Инициирует синтез стрессовых белков. Они ответственны за обезвоживание семян, что обеспечивает их покой.

Брассиностероиды. Химическая природы – стероиды. Регулирует рост семяпочки, стимулирует ее развитие и образование семян; стимулируют устойчивость к стрессам и грибным заболеваниям.

Фузикокцины. Химическая природа – стероиды. Выводит семена из состояния покоя, ускоряет их прорастание.

Фитогормоны активно влияют на синтез, распад и транспорт друг друга. Поэтому изменение уровня одного фитогормона приводит к изменению всех фитогормональной системы.

4.3. Биологические способы защиты растений

В качестве дополнения или альтернативы пестицидам возможно использование естественных врагов вредителей (паразитов и хищников, в том числе микроорганизмов).

Установлено, что многие виды насекомых-вредителей погибают под влиянием соответствующих энтомопатогенных препаратов.

Впервые энтомопатогенные микроорганизмы (мускаридинный гриб) попытался

применить И.И. Мечников против хлебного жука – он собирал и разбрасывал больных личинок.

В настоящее время производится более 30 микробиологических энтомопатогенных препаратов. Они специфически поражают определенные виды насекомых, практически безвредны для человека, теплокровных животных, птиц и полезных насекомых, не вызывают нежелательных изменений в биоценозах и не нарушают экологию.

Отечественная промышленность выпускает три группы энтомопатогенных препаратов.

1. Бактериальные препараты на основе Bacillus thuringiensis (энтобактерин, алестин, экзотоксин, дендробациллин и др.).

Они наиболее эффективны против листогрызущих вредителей.

Например, энтобактерин предназначен для борьбы с садово-огородными вредителями, эффективен против 60 видов насекомых. При его производстве используют штаммы, которые образуют δ -токсин. Он представляет собой белковый восьмигранник. При попадании в кишечник насекомых токсин растворяется в щелочной среде и частично гидролизуется протеазами. Такой модифицированный белок взаимодействует со стенкой кишки, в результате чего содержимое кишечного тракта попадает в кровоток насекомых. Это вызывает паралич насекомых. δ -токсин безвреден для млекопитающих животных, человека, птиц. Применяют путем опрыскивания растений водной эмульсией в период активного роста вредителя. Основная масса вредителей погибает в течение 2-10 дней.

2. *Грибные препараты.* К ним относят: боверин на основе гриба *Beauveria bassiana*, вертициллин на основе гриба *Verticillium lecanii*.

Грибы обладают рядом особенностей: поражение происходит не через пищеварительный тракт, а через кутикулу; насекомые поражаются в фазе развития куколки; грибы обладают большой скоростью роста и репродуктивной способностью; в виде спор в природных условиях длительно не снижают энтомопатогенную активность; обладают высокой специфичностью в поражении отдельных видов насекомых.

Спора гриба проникает в полость тела насекомого, где прорастает в гифу, затем она разрастается в мицелий, от которого отчленяются конидии. Они циркулируют в гемолимфе, выделяя токсины. Если токсина мало или он отсутствует, то мицелий заполняет все тело насекомого, в первую очередь, мышечную ткань.

Например, боверин применяют против листогрызущих вредителей сада, яблоневой и восточной плодожорки, вредителей, личинок колорадского жука на картофеле. С добавлением химических инсектицидов применение препарата приводит к 100% гибели личинок всех возрастов.

3. Препараты на основе вирусов ядерного полиэдроза. К ним относят: вирин-ЭНШ (вирус ядерного полиэдроза непарного шелкопряда), вирин-ЭКС (вирус ядерного полиэдроза капустной совки), вирин-КШ (вирус ядерного полиэдроза кольчатого шелкопряда).

Такие препараты обладают высокой специфичностью по отношению к насекомомухозяину, поэтому они практически безвредны для человека, флоры и фауны. Вирусы устойчивы к неблагоприятным воздействиям окружающей среды (температуре, влажности). Вне насекомого они могут сохранять активность в течение 10-15 лет.

Заражение вирусом происходит при питании насекомого. В кишечнике при щелоч-

ных значениях рН освобождаются вирионы. Они проникают через стенку кишечника, а в ядрах восприимчивых клеток осуществляется их репликация. Это приводит к гибели личинок насекомого.

Комбинации нескольких биологических средств оказываются, как правило, более эффективными, чем отдельно взятые препараты.

Для защиты растений от фитопатогенных микроорганизмов применяют следующие средства:

Антибиотики. Например, грибы *Trichoderma sp.* и *Trichotecium roseum* продуцируют триходермин и трихотецин, которые используют для борьбы с корневыми гнилями овощных, зерновых и технических культур.

Фитоалексины. Они синтезируются в тканях растений в ответ на внедрение фитопатогенов и являются высокоспецифичными заменителями пестицидов. Например, фитоалексин перца применяют при фитофторозе.

Микробы-антагонисты. Они вытесняют патогенный вид и подавляют его развитие.

Вакцинные и иммунологические препараты. Их вводят в прорастающие семена.

4.4. Фиторегуляторы

Возможность использования фиторегуляторов в борьбе с вредителями и болезнями сельскохозяйственных растений была показана на рубеже 40-50-х годов XX века.

При их применении повышение устойчивости растений к вредоносным организмам обусловлено следующими причинами: препарат является токсином для какого-либо паразита; улучшаются морфологические показатели и общее состояние растения, это делает его менее уязвимым для атаки вредителями и болезнями; изменение метаболизма растения-хозяина неблагоприятно для паразита; изменение фазы развития растения-хозяина относительно фазы паразита ведет к сокращению периода питания, а, следовательно, и снижению вредоносного действия.

Вредители и возбудители заболеваний оказывают регуляторное действие на растение-хозяина, создавая тем самым для себя благоприятные условия.

Многие паразитические организмы синтезируют аналоги цитокининов, обогащают ими зараженные клетки и тем самым обеспечивают приток к месту своего развития питательных веществ из других частей растения. Эти участки остаются «зелеными островками» на пожелтевших листьях. Такие же «зеленые островки» на листьях образуют личинки насекомых, паразитическое растение повилика.

Показано, что насекомые нуждаются для своего развития в некоторых гормонах растений, которые в организме насекомого превращаются в их собственные регуляторные вещества. Так, фитогормон брассинолид ускоряет время наступления линьки насекомых.

В связи с этим предложено использовать гормоны растений или близких по строению веществ как нового поколения инсектицидов. При использовании этих препаратов снижение численности насекомых наступает не за счет блокирования какого-либо звена метаболизма, а за счет изменения времени наступления метаморфоза или влияния на половое созревание.

В ходе эволюции растения выработали собственную систему защиты. Так, под действием повреждений, вызываемых вредителем или патогеном, усиливается биосинтез этилена. Он распространяется во всем растении и разносится ветром. При этом в расте-

нии: 1) стимулируется образование фитоалексинов. Это вещества, выполняющие роль антибиотиков у растений; 2) повышается активность хитиназы. Это фермент, разрушающий пищеварительный тракт насекомых или хитиноподобное вещество, из которого состоят стенки гифов патогенных грибов, после чего их протопласты лизируются ферментами растительной клетки; 3) стимулируется синтез другого фитогормона – абсцизовой кислоты. Она затормаживает процессы роста и деления клеток и стимулирует синтез стрессовых белков.

Вопросы для самоконтроля

- 1) Преимущества бактериальных удобрений перед химическими средствами повышения урожайности растений.
 - 2) Какие группы бактериальных удобрений Вам известны?
- 3) Дайте характеристику бактериальных удобрений на основе активных жизнеспособных бактерий из рода *Rhizobium* (нитрагин и ризоторфин).
- 4) Дайте характеристику бактериальных удобрений, содержащих свободно-живущий почвенный микроорганизм азотобактер *Azotobacter chroococcum* (флавобактерин и ризоэнтерин).
 - 5) Дайте характеристику бактериальных удобрений ризобактерина и экстрасола.
- 6) Дайте характеристику бактериального удобрения фосфоробактерина, содержащего споры капустной палочки *Bacillus megaterium var. phosphaticum*.
 - 7) Дайте характеристику биологически активного грунта АМБ.
 - 8) Какова роль грибов-микоризообразователей в повышении урожайности растений?
 - 9) Какие биологические способы защиты растений Вам известны?
- 10) Охарактеризуйте группу бактериальных энтомопатогенных препараты на основе *Bacillus thuringiensis* (энтобактерин, алестин, экзотоксин, дендробациллин и др.).
 - 11) Охарактеризуйте грибные энтомопатогенные препараты (боверин и вертициллин).
 - 12) Охарактеризуйте препараты на основе вирусов ядерного полиэдроза.
 - 13) Какие еще биологические способы защиты растений Вы знаете?
 - 14) Роль фиторегуляторов в системе защиты растений.

СПИСОК ЛИТЕРАТУРЫ

Основная

1. *Клунова, С.М.* Биотехнология: учебник / С.М. Клунова, Т.А. Егорова, Е.А. Живухина. – М.: Академия, 2010. - 256 с. – ISBN 978-5-7695-6697-4

Дополнительная

- 1. Биотехнология: учебное пособие для вузов, в 8 кн., под ред. Егорова Н.С., Самуилова В.Д. М., 1987.
- 3. *Марченко, Г.Г.* Гибридизация животных / Г.Г. Марченко, О.И. Бирюков, Т.С. Преображенская. Саратов: ФГОУ ВПО «Саратовский ГАУ», 2008. 84 с.
- 4. *Никульников*, *B*.С. Биотехнология в животноводстве: учебное пособие / В.С. Никульников, В.К. Кретинин. М.: Колос, 2007. 544 с. ISBN 978-5-10-003966-2
- 5. Сельскохозяйственная биотехнология / Шевелуха В.С. и др. М.: Высшая школа, 2003.-427 с. ISBN: 5-06-004264-2
- 6. *Шишков*, *В.Н.* Современная биотехнология в ветеринарной медицине / В.Н. Шишков и др. М., 1988.

- 7. Нормативно-правовая литература:
- Комплексная программа развития биотехнологий в Российской Федерации на период до 2020 года / утверждено председателем правительства Российской Федерации В. Путиным 24 апреля 2012 г. № 1853п-П8. М., 2012. 76 с. (ссылка доступа http://www.nacles.ru/ftpgetfile.php?id=247)
- Рабочие материалы к стратегии развития биотехнологической отрасли промышленности до 2020 года / Общество биотехнологов России им. Ю.А. Овчинникова. Союз предприятий биотехнологической отрасли. М., 2009. 85 с. (ссылка доступа http://www.biorosinfo.ru/papers-society/Strategy_Bioindustry.pdf)
- Тенденции развития промышленного применения биотехнологий в Российской Федерации / Институт биохимии им. Н.А. Баха РАН. М., 2011. 323 с. (ссылка доступа http://sedi2.esteri.it/Sitiweb/AmbMosca/Pubblicazioni/Faldoni/biotecnologierus.pdf)

Тема 5

НОВЕЙШИЕ ДОСТИЖЕНИЯ БИОТЕХНОЛОГИИ В ОБЛАСТИ **КОРМОПРОИЗВОДСТВА**

Форма проведения: пресс-конференция

Необходимое оборудование: комплект мультимедийного оборудования.

Количество часов: 2 часа

Практическое занятие в форме «пресс-конференция» проводится как заключительное по дисциплине «Биотехнология в кормопроизводстве».

Цель занятия: расширить, систематизировать и обобщить у студентов умения и навыки в области применения новейших биотехнологических разработок для обеспечения кормовой базы в профессиональной деятельности.

Задачи занятия:

- ✓ конкретизация и углубление знаний;
- ✓ активация деятельности студентов в обсуждении перспектив применения теоретических знаний на практике;

 - ✓ развитие навыков самостоятельной работы;✓ формирование умения творчески решать поставленные задачи;
- ✓ формирование информационной культуры (работа с информацией, анализ работы и ее систематизация, творческая переработка материала);
 - ✓ формирование коммуникативной компетентности и толерантности.

Алгоритм занятия:

- 1. Вступление к теме.
- 2. Тема пресс-конференции «Новейшие достижения биотехнологии в области кормопроизводства»:
 - нетрадиционные источники кормового белка;
 - ферментация зеленой массы растений;
 - кормовые добавки биотехнологического генеза;
 - способы повышения урожайности кормовых культур.

Подготовка к занятию:

Преподаватель определяет для студентов темы докладов и список литературы, а также методы, приемы и средства стимулирования творческой и мыслительной активности студента. Студент самостоятельно прорабатывает материал по предложенной преподавателем теме, готовит доклад и презентацию в соответствии с темой.

Примерные темы (направленность) докладов*:

- 1. Водоросли как источник кормового белка.
- 2. Биомасса из личинок мух перспективный источник кормового белка.
- 3. Вермикультура как источник кормового белка.

- 4. ЭМ-технология в животноводстве.
- 5. Новейшие биотехнологические разработки в области кормовых добавок (тема может быть проработана несколькими студентами).
 - 6. Биоконверсия отходов производств для обеспечения кормовой базы.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. **Блинов, В.А.** Биотехнология (некоторые проблемы сельскохозяйственной биотехнологии) / В.А. Блинов. Саратов: ОГУП «РИК «Полиграфия Поволжья», 2003. 196 с.
- 2. **Блинов, В.А.** Биотехнология пивной дробины (консервирование и биотрансформация) / В.А. Блинов, И.А. Сазонова, Е.Н. Зеленцова. Саратов: «Контур-Про», 2006. 65 с.
- 3. **Блинов, В.А.** Общая биотехнология. Курс лекций, Ч. 2. / В.А. Блинов. Саратов: СГАУ, 2004. 144 с.
- 4. **Блинов, В.А.** Пробиотики в пищевой промышленности и сельском хозяйстве / В.А. Блинов, С.Н. Буршина, С.В. Ковалева. Саратов: ИЦ Наука», 2011. 170 с.
- 5. **Блинов, В.А.** ЭМ-технология сельскому хозяйству / В.А. Блинов. Саратов: ФГОУ ВПО «Саратовский ГАУ», 2003. 205 с
- 6. **Волова**, **Т.Г.** Биотехнология / Т. Г. Волова. Новосибирск: Изд-во Сибирского отделения Российской Академии наук, 1999. 252 с.
- 7. **Глик, Б.** Молекулярная биотехнология. Принципы и применение. Пер. с англ. / Б. Глик, Дж. Пастернак. М: Мир, 2002. 589 с.
- 8. **Егорова, Т.А.** Основы биотехнологии / Т.А. Егорова, С.М. Клунова, Е.А. Живухина. М.: Издательский центр «Академия», 2005. 208 с.
- 9. **Мотовилов, К.Я.** Экспертиза кормов и кормовых добавок: учебно-справочное пособие / К.Я. Мотовилов, А.П. Булато, В.М. Позняковский. Новосибирск: Сиб. унив. изд-во, 2004. 336 с.
- 10. **Никульников, В.С.** Биотехнология в животноводстве: учебное пособие / В.С. Никульников, В.К. Кретинин. М.: Колос, 2007. 544 с.
- 11. Современная биотехнология в ветеринарной медицине / Шишков В.Н. и др. М., 1988. 56 с.
- 12. **Фаритов, Т.А.** Корма и кормовые добавки для животных: учебное пособие / Т.А. Фаритов. СПб.: Лань, 2010. 304 с.
- 13. **Фасинин, В.И.** Кормление сельскохозяйственной птицы: учебник / В.И. Фасинин, И.А. Егоров, И.Ф. Драганов. М.: ГЭОТАР Медиа, 2011. 344 с.
- 14. **Шевелуха, В.С.** Сельскохозяйственная биотехнология / В.С. Шевелуха, Е.А. Калашникова, Е.С. Воронин М.: Высшая школа, 2003. 469 с.
- 15. Журналы: «Зоотехния», «Ветеринария», «Комбикорма», «Животноводство России», «Биотехнология», «Молочное и мясное скотоводство», «Птицеводство», «Свиноводство», «Комбикормовая промышленность».
 - 16. http://www.biotechnolog.ru
- 17. Адаптивное кормопроизводство: Международный научно-практический электронный журнал ВНИИ кормов им. В.Р. Вильямса; ссылка доступа http://adaptagro.ru/index.php?option=com_content&view=article&id=57&Itemid=73&lang=ru
 - 18. Интернет-журнал «Коммерческая биотехнология» http://www.cbio.ru
- 19. On-line-журнал «Биотехнология. Теория и практика» (ссылка доступа http://www.biotechlink.org)

СОДЕРЖАНИЕ

Введение	3
Тема 1. Введение в дисциплину. Производство кормового белка	4
Теоретическая часть	4
1.1. Значение биотехнологии для кормопроизводства	4
1.2. Нетрадиционные источники кормового белка	4
1.3. Сырьевая база для синтеза комового белка	6
1.4. Принципиальная технологическая схема выращивания кормовой биомассы	7
Практическая часть. Физико-химическая характеристика кормовых дрожжей	8
Определение кислотности кормовых дрожжей	9
Определение массовой доли белков в кормовых дрожжах методом формолово-	
го титрования	9
Вопросы для самоконтроля	10
Список литературы	10
Тема 2. Биотехнологические приемы в производстве растительных	
кормов	12
Теоретическая часть	12
2.1. Принцип силосования кормов	12
2.2. Микрофлора силоса	13
2.3. Химическое силосование сочных кормов	15
2.4. Ферментные препараты и бактериальные закваски для силосования кормов	15
2.5. Теоретические основы сенажирования трав	15
2.6. Протеинизация крахмалсодержащего сырья	17
2.7. Модификация сока зеленых растений	17
Практическая часть. Исследование некоторых физико-химических характери-	
стик растительных кормов	18
Определение кислотности силоса	19
Определение аммиака в силосе	21
Количественное определение молочной кислоты в силосе и сенаже	21
Практическая часть. Стабилизация жидких протеиновых продуктов химиче-	
скими консервантами	23
Определение рН сока	24
Определение концентрации углеводов	24
Определение содержания общего белка	25
Вопросы для самоконтроля	25
Список литературы	26
Тема 3. Кормовые добавки биотехнологического генеза	28
Теоретическая часть	28
3.1. Кормовые препараты аминокислот	28
3.2. Ферментные препараты	29
3.3. Витамины	30
3.4. Пробиотики	31
3.5. Использование отходов технических производств в кормлении животных	34
Практическая часть. Исследование химического состава кормовых добавок.	
Качественные реакции на витамины	36
Вопросы для самоконтроля	37
Список питературы	37

Тема 4. Биологические способы повышения урожайности кормовых	
культур	39
4.1. Бактериальные удобрения	39
	41
	42
4.4. Фиторегуляторы	44
	45
Список литературы	45
Тема 5. Новейшие достижения биотехнологии в области кормопроизводства	47
Библиографический список	49
Содержание	50